--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-test2 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.502770083102493 - name: Recall type: recall value: 0.33642261353104724 - name: F1 type: f1 value: 0.4031093836757356 - name: Accuracy type: accuracy value: 0.9428840152195289 --- # distilbert-base-uncased-test2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2724 - Precision: 0.5028 - Recall: 0.3364 - F1: 0.4031 - Accuracy: 0.9429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2849 | 0.4606 | 0.2382 | 0.3140 | 0.9374 | | No log | 2.0 | 426 | 0.2610 | 0.5439 | 0.3216 | 0.4042 | 0.9424 | | 0.1949 | 3.0 | 639 | 0.2724 | 0.5028 | 0.3364 | 0.4031 | 0.9429 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1