---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:96724
- loss:Matryoshka2dLoss
- loss:MatryoshkaLoss
- loss:TripletLoss
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
base_model: NbAiLab/nb-sbert-base
widget:
- source_sentence: installere nytt gulv i låve
  sentences:
  - sparkling av 130 kvm vegg på loft
  - legge nytt gulv i låve
  - plenanlegg
- source_sentence: Beskjæring av høy hekk
  sentences:
  - Beskjæring/ kapping av tre
  - Fornyelse av fasade
  - Bytting av garasjeport motor
- source_sentence: Søker takstmann til nyoppusset 3 roms leilighet på Nordnes/sentrum.
    Hjørneleilighet, heis, stor altan på 11m2
  sentences:
  - Montering av nytt kjøkken
  - Installere varmepumpe
  - Tilstandsrapport med verdivurdering, enebolig, Bærum
- source_sentence: Skadedyrsokntroll
  sentences:
  - asfaltering
  - Oppføring av garasje
  - Veggedyr bekjempelse
- source_sentence: Støp og fliselegging av gang
  sentences:
  - Reparasjon av råteskader på hus
  - hagearbeid i fellesområder
  - Støp av gulv i kjeller
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on NbAiLab/nb-sbert-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base). It maps sentences & paragraphs to a 64-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base) <!-- at revision 26567595914b5f4b04ec871b5814db989ca261b9 -->
- **Maximum Sequence Length:** 75 tokens
- **Output Dimensionality:** 64 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/SBertBaseMittanbudver3")
# Run inference
sentences = [
    'Støp og fliselegging av gang',
    'Støp av gulv i kjeller',
    'Reparasjon av råteskader på hus',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 64]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### Unnamed Dataset


* Size: 55,426 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | sentence_2                                                                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 11.59 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.69 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.44 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
  | sentence_0                                                        | sentence_1                                                       | sentence_2                                            |
  |:------------------------------------------------------------------|:-----------------------------------------------------------------|:------------------------------------------------------|
  | <code>Vaskerom</code>                                             | <code>Ønsker tilbud på legging av våtromsbelegg lite bad:</code> | <code>Verdivurdering av 177 kvm stor enebolig.</code> |
  | <code>Bytte lås i leilighet i Obos borettslag, Galgeberg. </code> | <code>Bytte postkasselås</code>                                  | <code>Helsparkling av betongvegger med tapet</code>   |
  | <code>Legging av mikrosement</code>                               | <code>Ønsker tilbud på mikrosement</code>                        | <code>Betongsaging - 2 nye utvendige vinduer</code>   |
* Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters:
  ```json
  {
      "loss": "TripletLoss",
      "n_layers_per_step": 1,
      "last_layer_weight": 1.0,
      "prior_layers_weight": 1.0,
      "kl_div_weight": 1.0,
      "kl_temperature": 0.3,
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": 1
  }
  ```

#### Unnamed Dataset


* Size: 22,563 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 10.79 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.17 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
  | sentence_0                                          | sentence_1                                  |
  |:----------------------------------------------------|:--------------------------------------------|
  | <code>Trefelling - 1 stor gran og en osp</code>     | <code>trefelling av stor gran og osp</code> |
  | <code>Bærebjelker - vurdering</code>                | <code>sjekk av bærebjelker</code>           |
  | <code>Mindre graveoppdrag - 30m2 x 40cm dypt</code> | <code>mindre gravearbeid</code>             |
* Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "n_layers_per_step": 1,
      "last_layer_weight": 1.0,
      "prior_layers_weight": 1.0,
      "kl_div_weight": 1.0,
      "kl_temperature": 0.3,
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": 1
  }
  ```

#### Unnamed Dataset


* Size: 18,735 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                       | label                                                           |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | float                                                           |
  | details | <ul><li>min: 4 tokens</li><li>mean: 13.64 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.56 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.5</li><li>max: 0.95</li></ul> |
* Samples:
  | sentence_0                                     | sentence_1                                     | label             |
  |:-----------------------------------------------|:-----------------------------------------------|:------------------|
  | <code>Pusse murvegg</code>                     | <code>Pusse opp vegg</code>                    | <code>0.75</code> |
  | <code>Flyttevask av leilighet på 35 kvm</code> | <code>Flyttevask av leilighet på 40 kvm</code> | <code>0.95</code> |
  | <code>Flis 30x 60 - 40m2</code>                | <code>Flislegging av gulv, 40m2</code>         | <code>0.75</code> |
* Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "n_layers_per_step": 1,
      "last_layer_weight": 1.0,
      "prior_layers_weight": 1.0,
      "kl_div_weight": 1.0,
      "kl_temperature": 0.3,
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": 1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.2844 | 500  | 6.7584        |
| 0.5688 | 1000 | 7.3305        |
| 0.8532 | 1500 | 7.3915        |
| 1.0006 | 1759 | -             |
| 1.1371 | 2000 | 7.4073        |
| 1.4215 | 2500 | 7.0864        |
| 1.7059 | 3000 | 6.9577        |
| 1.9903 | 3500 | 7.0965        |
| 2.0006 | 3518 | -             |
| 2.2742 | 4000 | 6.9915        |
| 2.5586 | 4500 | 6.9164        |
| 2.8430 | 5000 | 6.8257        |
| 3.0006 | 5277 | -             |
| 3.1268 | 5500 | 7.0359        |
| 3.4113 | 6000 | 6.9761        |
| 3.6957 | 6500 | 6.9392        |
| 3.9801 | 7000 | 6.8352        |
| 3.9983 | 7032 | -             |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### Matryoshka2dLoss
```bibtex
@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings},
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->