--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:96724 - loss:Matryoshka2dLoss - loss:MatryoshkaLoss - loss:TripletLoss - loss:MultipleNegativesRankingLoss - loss:CoSENTLoss base_model: NbAiLab/nb-sbert-base widget: - source_sentence: installere nytt gulv i låve sentences: - sparkling av 130 kvm vegg på loft - legge nytt gulv i låve - plenanlegg - source_sentence: Beskjæring av høy hekk sentences: - Beskjæring/ kapping av tre - Fornyelse av fasade - Bytting av garasjeport motor - source_sentence: Søker takstmann til nyoppusset 3 roms leilighet på Nordnes/sentrum. Hjørneleilighet, heis, stor altan på 11m2 sentences: - Montering av nytt kjøkken - Installere varmepumpe - Tilstandsrapport med verdivurdering, enebolig, Bærum - source_sentence: Skadedyrsokntroll sentences: - asfaltering - Oppføring av garasje - Veggedyr bekjempelse - source_sentence: Støp og fliselegging av gang sentences: - Reparasjon av råteskader på hus - hagearbeid i fellesområder - Støp av gulv i kjeller pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on NbAiLab/nb-sbert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base). It maps sentences & paragraphs to a 64-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base) <!-- at revision 26567595914b5f4b04ec871b5814db989ca261b9 --> - **Maximum Sequence Length:** 75 tokens - **Output Dimensionality:** 64 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ostoveland/SBertBaseMittanbudver3") # Run inference sentences = [ 'Støp og fliselegging av gang', 'Støp av gulv i kjeller', 'Reparasjon av råteskader på hus', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 64] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets #### Unnamed Dataset * Size: 55,426 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 11.59 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.69 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.44 tokens</li><li>max: 39 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:------------------------------------------------------------------|:-----------------------------------------------------------------|:------------------------------------------------------| | <code>Vaskerom</code> | <code>Ønsker tilbud på legging av våtromsbelegg lite bad:</code> | <code>Verdivurdering av 177 kvm stor enebolig.</code> | | <code>Bytte lås i leilighet i Obos borettslag, Galgeberg. </code> | <code>Bytte postkasselås</code> | <code>Helsparkling av betongvegger med tapet</code> | | <code>Legging av mikrosement</code> | <code>Ønsker tilbud på mikrosement</code> | <code>Betongsaging - 2 nye utvendige vinduer</code> | * Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters: ```json { "loss": "TripletLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 } ``` #### Unnamed Dataset * Size: 22,563 training samples * Columns: <code>sentence_0</code> and <code>sentence_1</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 10.79 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.17 tokens</li><li>max: 27 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | |:----------------------------------------------------|:--------------------------------------------| | <code>Trefelling - 1 stor gran og en osp</code> | <code>trefelling av stor gran og osp</code> | | <code>Bærebjelker - vurdering</code> | <code>sjekk av bærebjelker</code> | | <code>Mindre graveoppdrag - 30m2 x 40cm dypt</code> | <code>mindre gravearbeid</code> | * Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 } ``` #### Unnamed Dataset * Size: 18,735 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 4 tokens</li><li>mean: 13.64 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.56 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.5</li><li>max: 0.95</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------------------------------|:-----------------------------------------------|:------------------| | <code>Pusse murvegg</code> | <code>Pusse opp vegg</code> | <code>0.75</code> | | <code>Flyttevask av leilighet på 35 kvm</code> | <code>Flyttevask av leilighet på 40 kvm</code> | <code>0.95</code> | | <code>Flis 30x 60 - 40m2</code> | <code>Flislegging av gulv, 40m2</code> | <code>0.75</code> | * Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters: ```json { "loss": "CoSENTLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.2844 | 500 | 6.7584 | | 0.5688 | 1000 | 7.3305 | | 0.8532 | 1500 | 7.3915 | | 1.0006 | 1759 | - | | 1.1371 | 2000 | 7.4073 | | 1.4215 | 2500 | 7.0864 | | 1.7059 | 3000 | 6.9577 | | 1.9903 | 3500 | 7.0965 | | 2.0006 | 3518 | - | | 2.2742 | 4000 | 6.9915 | | 2.5586 | 4500 | 6.9164 | | 2.8430 | 5000 | 6.8257 | | 3.0006 | 5277 | - | | 3.1268 | 5500 | 7.0359 | | 3.4113 | 6000 | 6.9761 | | 3.6957 | 6500 | 6.9392 | | 3.9801 | 7000 | 6.8352 | | 3.9983 | 7032 | - | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.5.1+cu121 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### Matryoshka2dLoss ```bibtex @misc{li20242d, title={2D Matryoshka Sentence Embeddings}, author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li}, year={2024}, eprint={2402.14776}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->