--- library_name: transformers license: mit base_model: dslim/bert-base-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-NER-model results: [] --- # bert-base-NER-model This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3093 - Precision: 0.5601 - Recall: 0.4059 - F1: 0.4707 - Accuracy: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.3253 | 0.5176 | 0.4096 | 0.4573 | 0.9472 | | No log | 2.0 | 426 | 0.3093 | 0.5601 | 0.4059 | 0.4707 | 0.9488 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Tokenizers 0.20.3