--- library_name: transformers license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Bert-Contact-NLI results: [] --- # Bert-Contact-NLI This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9601 - Model Preparation Time: 0.0101 - Accuracy: 0.6358 - Precision: 0.6154 - Recall: 0.6254 - F1: 0.6161 - Ratio: 0.4969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 1.0 | 95 | 0.9601 | 0.0101 | 0.6358 | 0.6154 | 0.6254 | 0.6161 | 0.4969 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3