--- license: apache-2.0 language: - it widget: - text: Mi chiamo Marco Rossi, vivo a Roma e lavoro per l'Agenzia Spaziale Italiana example_title: Example 1 --- --------------------------------------------------------------------------------------------------
    Task: Named Entity Recognition
    Model: BLAZE 🔥
    Lang: IT
  Type: Uncased
--------------------------------------------------------------------------------------------------

Model description

This is a lightweight and uncased model for the Italian language, fine-tuned for Named Entity Recognition (Person, Location, Organization and Miscellanea classes) on the [WikiNER](https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) dataset [1], using Blaze-IT ([blaze-it](https://huggingface.co/osiria/blaze-it)) as a pre-trained model.

Training and Performances

The model is trained to perform entity recognition over 4 classes: PER (persons), LOC (locations), ORG (organizations), MISC (miscellanea, mainly events, products and services). It has been fine-tuned for Named Entity Recognition, using the WikiNER Italian dataset plus an additional custom dataset of manually annotated Wikipedia paragraphs. The model has been trained for 1 epoch with a constant learning rate of 1e-5. The 5-fold cross-validated performances on the test set are reported in the following table: | Recall | Precision | F1 | | ------ | ------ | ------ | | 89.29 | 89.84 | 89.53 | The metrics have been computed at the token level and then macro-averaged over the 4 classes. Then, since WikiNER is an automatically annotated (silver standard) dataset, which sometimes contains imperfect annotations, an additional fine-tuning on ~3.500 manually annotated paragraphs has been performed. You can try the model online using this web app: https://huggingface.co/spaces/osiria/blaze-it-demo

References

[1] https://www.sciencedirect.com/science/article/pii/S0004370212000276

Limitations

This model is mainly trained on Wikipedia, so it's particularly suitable for natively digital text from the world wide web, written in a correct and fluent form (like wikis, web pages, news, etc.). However, it may show limitations when it comes to chaotic text, containing errors and slang expressions (like social media posts) or when it comes to domain-specific text (like medical, financial or legal content).

License

The model is released under Apache-2.0 license