--- license: apache-2.0 language: - it widget: - text: "una fantastica [MASK] di #calcio! grande prestazione del mister e della squadra" example_title: "Example 1" - text: "il governo [MASK] dovrebbe fare politica, non soltanto propaganda! #vergogna" example_title: "Example 2" - text: "che serata da sogno sul #redcarpet! grazie a tutti gli attori e registi del [MASK] italiano #oscar #awards" example_title: "Example 3" --- --------------------------------------------------------------------------------------------------
  
    Model: BERT-TWEET
    Lang: IT
  
--------------------------------------------------------------------------------------------------

Model description

This is a BERT [1] uncased model for the Italian language, obtained using TwHIN-BERT [2] ([twhin-bert-base](https://huggingface.co/Twitter/twhin-bert-base)) as a starting point and focusing it on the Italian language by modifying the embedding layer (as in [3], computing document-level frequencies over the Wikipedia dataset) The resulting model has 110M parameters, a vocabulary of 30.520 tokens, and a size of ~440 MB.

Quick usage

```python from transformers import BertTokenizerFast, BertModel tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-tweet-base-italian-uncased") model = BertModel.from_pretrained("osiria/bert-tweet-base-italian-uncased") ``` Here you can find the find the model already fine-tuned on Sentiment Analysis: https://huggingface.co/osiria/bert-tweet-italian-uncased-sentiment

References

[1] https://arxiv.org/abs/1810.04805 [2] https://arxiv.org/abs/2209.07562 [3] https://arxiv.org/abs/2010.05609

Limitations

This model was trained on tweets, so it's mainly suitable for general-purpose social media text processing, involving short texts written in a social network style. It might show limitations when it comes to longer and more structured text, or domain-specific text.

License

The model is released under Apache-2.0 license