File size: 2,998 Bytes
2d24f74 82f42de d753083 2d24f74 82f42de d753083 82f42de 8b56287 82f42de d753083 82f42de d753083 82f42de d753083 82f42de d753083 82f42de d753083 8b56287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
datasets:
- shunk031/jsnli
language:
- ja
---
# sbert-jsnli-luke-japanese-base-lite
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
The base model is [studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite) and was trained 1 epoch with [shunk031/jsnli](https://huggingface.co/datasets/shunk031/jsnli).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('oshizo/sbert-jsnli-luke-japanese-base-lite')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('oshizo/sbert-jsnli-luke-japanese-base-lite')
model = AutoModel.from_pretrained('oshizo/sbert-jsnli-luke-japanese-base-lite')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
The results of the evaluation by JSTS and JSICK are available [here](https://github.com/oshizo/JapaneseEmbeddingEval).
## Training
Training scripts are available in [this repository](https://github.com/oshizo/JapaneseEmbeddingTrain).
This model was trained 1 epoch on Google Colab Pro A100 and took approximately 40 minutes.
|