File size: 2,998 Bytes
2d24f74
82f42de
 
 
 
 
 
d753083
 
 
 
 
2d24f74
82f42de
d753083
82f42de
 
 
8b56287
82f42de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d753083
82f42de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d753083
 
82f42de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d753083
82f42de
d753083
82f42de
d753083
8b56287
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
datasets:
- shunk031/jsnli
language:
- ja
---

# sbert-jsnli-luke-japanese-base-lite

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

The base model is [studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite) and was trained 1 epoch with [shunk031/jsnli](https://huggingface.co/datasets/shunk031/jsnli).

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('oshizo/sbert-jsnli-luke-japanese-base-lite')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('oshizo/sbert-jsnli-luke-japanese-base-lite')
model = AutoModel.from_pretrained('oshizo/sbert-jsnli-luke-japanese-base-lite')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

The results of the evaluation by JSTS and JSICK are available [here](https://github.com/oshizo/JapaneseEmbeddingEval).

## Training

Training scripts are available in [this repository](https://github.com/oshizo/JapaneseEmbeddingTrain).
This model was trained 1 epoch on Google Colab Pro A100 and took approximately 40 minutes.