detr_algae_0.25r_v0
This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1346
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.1721 | 1.0 | 69 | 3.3857 |
3.3617 | 2.0 | 138 | 2.9312 |
3.0175 | 3.0 | 207 | 2.6671 |
2.9799 | 4.0 | 276 | 2.7044 |
2.835 | 5.0 | 345 | 2.7200 |
2.7184 | 6.0 | 414 | 2.4760 |
2.7039 | 7.0 | 483 | 2.5395 |
2.6316 | 8.0 | 552 | 2.4040 |
2.683 | 9.0 | 621 | 2.4622 |
2.6908 | 10.0 | 690 | 2.5163 |
2.5706 | 11.0 | 759 | 2.2428 |
2.5066 | 12.0 | 828 | 2.3053 |
2.5146 | 13.0 | 897 | 2.2936 |
2.446 | 14.0 | 966 | 2.1469 |
2.3444 | 15.0 | 1035 | 2.2260 |
2.3997 | 16.0 | 1104 | 2.2093 |
2.3823 | 17.0 | 1173 | 2.2598 |
2.3741 | 18.0 | 1242 | 2.1737 |
2.3437 | 19.0 | 1311 | 2.1670 |
2.3134 | 20.0 | 1380 | 2.2041 |
2.3636 | 21.0 | 1449 | 2.1305 |
2.2936 | 22.0 | 1518 | 2.0564 |
2.2117 | 23.0 | 1587 | 2.0024 |
2.1955 | 24.0 | 1656 | 2.0013 |
2.1724 | 25.0 | 1725 | 1.9785 |
2.1765 | 26.0 | 1794 | 2.0120 |
2.1489 | 27.0 | 1863 | 1.9891 |
2.157 | 28.0 | 1932 | 1.9267 |
2.1454 | 29.0 | 2001 | 1.9686 |
2.1545 | 30.0 | 2070 | 2.0207 |
2.0847 | 31.0 | 2139 | 1.8773 |
2.0731 | 32.0 | 2208 | 1.8358 |
2.0717 | 33.0 | 2277 | 1.9076 |
2.0616 | 34.0 | 2346 | 1.9287 |
2.1044 | 35.0 | 2415 | 1.8625 |
2.04 | 36.0 | 2484 | 1.8683 |
2.0489 | 37.0 | 2553 | 1.8393 |
2.0562 | 38.0 | 2622 | 1.9013 |
2.0433 | 39.0 | 2691 | 1.8472 |
2.0093 | 40.0 | 2760 | 1.8122 |
2.0149 | 41.0 | 2829 | 1.7668 |
2.049 | 42.0 | 2898 | 1.8419 |
1.9992 | 43.0 | 2967 | 1.8292 |
1.9494 | 44.0 | 3036 | 1.8329 |
2.0128 | 45.0 | 3105 | 1.8827 |
2.0712 | 46.0 | 3174 | 1.8425 |
1.9346 | 47.0 | 3243 | 1.8509 |
1.899 | 48.0 | 3312 | 1.7352 |
1.9576 | 49.0 | 3381 | 1.7825 |
1.9877 | 50.0 | 3450 | 1.7996 |
1.9176 | 51.0 | 3519 | 1.7754 |
1.9217 | 52.0 | 3588 | 1.7418 |
1.9365 | 53.0 | 3657 | 1.7711 |
1.9032 | 54.0 | 3726 | 1.7001 |
1.8404 | 55.0 | 3795 | 1.6628 |
1.8447 | 56.0 | 3864 | 1.6939 |
1.8418 | 57.0 | 3933 | 1.7099 |
1.7911 | 58.0 | 4002 | 1.6751 |
1.7899 | 59.0 | 4071 | 1.7471 |
1.8368 | 60.0 | 4140 | 1.7111 |
1.853 | 61.0 | 4209 | 1.7785 |
1.88 | 62.0 | 4278 | 1.7709 |
1.8734 | 63.0 | 4347 | 1.6597 |
1.8107 | 64.0 | 4416 | 1.6720 |
1.8329 | 65.0 | 4485 | 1.6868 |
1.8129 | 66.0 | 4554 | 1.6611 |
1.7972 | 67.0 | 4623 | 1.6452 |
1.7828 | 68.0 | 4692 | 1.6538 |
1.7653 | 69.0 | 4761 | 1.6246 |
1.7343 | 70.0 | 4830 | 1.5364 |
1.6567 | 71.0 | 4899 | 1.5308 |
1.6873 | 72.0 | 4968 | 1.5473 |
1.7233 | 73.0 | 5037 | 1.6096 |
1.6934 | 74.0 | 5106 | 1.5679 |
1.7263 | 75.0 | 5175 | 1.6542 |
1.7109 | 76.0 | 5244 | 1.5674 |
1.6977 | 77.0 | 5313 | 1.5367 |
1.6761 | 78.0 | 5382 | 1.5456 |
1.69 | 79.0 | 5451 | 1.5624 |
1.7241 | 80.0 | 5520 | 1.5067 |
1.643 | 81.0 | 5589 | 1.5723 |
1.6358 | 82.0 | 5658 | 1.5349 |
1.6511 | 83.0 | 5727 | 1.5321 |
1.6932 | 84.0 | 5796 | 1.5640 |
1.7214 | 85.0 | 5865 | 1.5118 |
1.6988 | 86.0 | 5934 | 1.5471 |
1.6697 | 87.0 | 6003 | 1.5650 |
1.6828 | 88.0 | 6072 | 1.5087 |
1.7211 | 89.0 | 6141 | 1.5302 |
1.6195 | 90.0 | 6210 | 1.5018 |
1.5924 | 91.0 | 6279 | 1.4886 |
1.5746 | 92.0 | 6348 | 1.4365 |
1.6277 | 93.0 | 6417 | 1.4995 |
1.5936 | 94.0 | 6486 | 1.4569 |
1.6132 | 95.0 | 6555 | 1.4982 |
1.5637 | 96.0 | 6624 | 1.4032 |
1.5502 | 97.0 | 6693 | 1.4388 |
1.5535 | 98.0 | 6762 | 1.4101 |
1.5306 | 99.0 | 6831 | 1.4048 |
1.5425 | 100.0 | 6900 | 1.4133 |
1.529 | 101.0 | 6969 | 1.4244 |
1.5659 | 102.0 | 7038 | 1.4268 |
1.5234 | 103.0 | 7107 | 1.3829 |
1.498 | 104.0 | 7176 | 1.3884 |
1.4838 | 105.0 | 7245 | 1.3627 |
1.4774 | 106.0 | 7314 | 1.3501 |
1.479 | 107.0 | 7383 | 1.3738 |
1.475 | 108.0 | 7452 | 1.3537 |
1.4592 | 109.0 | 7521 | 1.3621 |
1.5015 | 110.0 | 7590 | 1.4022 |
1.4948 | 111.0 | 7659 | 1.4069 |
1.4875 | 112.0 | 7728 | 1.3325 |
1.437 | 113.0 | 7797 | 1.3080 |
1.4276 | 114.0 | 7866 | 1.3100 |
1.4489 | 115.0 | 7935 | 1.3712 |
1.4951 | 116.0 | 8004 | 1.4256 |
1.4585 | 117.0 | 8073 | 1.3720 |
1.4736 | 118.0 | 8142 | 1.4397 |
1.4664 | 119.0 | 8211 | 1.4036 |
1.4569 | 120.0 | 8280 | 1.3672 |
1.4627 | 121.0 | 8349 | 1.3809 |
1.4924 | 122.0 | 8418 | 1.3420 |
1.4487 | 123.0 | 8487 | 1.3142 |
1.4341 | 124.0 | 8556 | 1.3238 |
1.4025 | 125.0 | 8625 | 1.2891 |
1.4013 | 126.0 | 8694 | 1.3140 |
1.3909 | 127.0 | 8763 | 1.3329 |
1.4305 | 128.0 | 8832 | 1.3489 |
1.3771 | 129.0 | 8901 | 1.3640 |
1.4442 | 130.0 | 8970 | 1.3695 |
1.4272 | 131.0 | 9039 | 1.3752 |
1.4087 | 132.0 | 9108 | 1.3145 |
1.3648 | 133.0 | 9177 | 1.3222 |
1.3981 | 134.0 | 9246 | 1.3483 |
1.4116 | 135.0 | 9315 | 1.2986 |
1.4117 | 136.0 | 9384 | 1.3789 |
1.4416 | 137.0 | 9453 | 1.3491 |
1.3753 | 138.0 | 9522 | 1.3026 |
1.3721 | 139.0 | 9591 | 1.3292 |
1.3951 | 140.0 | 9660 | 1.2946 |
1.3406 | 141.0 | 9729 | 1.2646 |
1.3336 | 142.0 | 9798 | 1.3247 |
1.3182 | 143.0 | 9867 | 1.2960 |
1.3293 | 144.0 | 9936 | 1.2845 |
1.3242 | 145.0 | 10005 | 1.2849 |
1.3171 | 146.0 | 10074 | 1.2662 |
1.3193 | 147.0 | 10143 | 1.2827 |
1.3298 | 148.0 | 10212 | 1.2776 |
1.3014 | 149.0 | 10281 | 1.2603 |
1.3419 | 150.0 | 10350 | 1.2484 |
1.3385 | 151.0 | 10419 | 1.2477 |
1.3029 | 152.0 | 10488 | 1.2408 |
1.2803 | 153.0 | 10557 | 1.2191 |
1.2562 | 154.0 | 10626 | 1.2264 |
1.2667 | 155.0 | 10695 | 1.2250 |
1.2669 | 156.0 | 10764 | 1.2095 |
1.2643 | 157.0 | 10833 | 1.1964 |
1.2548 | 158.0 | 10902 | 1.2019 |
1.262 | 159.0 | 10971 | 1.2393 |
1.2596 | 160.0 | 11040 | 1.2018 |
1.2476 | 161.0 | 11109 | 1.2308 |
1.2755 | 162.0 | 11178 | 1.2103 |
1.237 | 163.0 | 11247 | 1.2020 |
1.226 | 164.0 | 11316 | 1.2173 |
1.2278 | 165.0 | 11385 | 1.1912 |
1.244 | 166.0 | 11454 | 1.2036 |
1.2467 | 167.0 | 11523 | 1.1831 |
1.2063 | 168.0 | 11592 | 1.1720 |
1.2141 | 169.0 | 11661 | 1.1580 |
1.224 | 170.0 | 11730 | 1.1897 |
1.2171 | 171.0 | 11799 | 1.1546 |
1.2151 | 172.0 | 11868 | 1.1621 |
1.1623 | 173.0 | 11937 | 1.1899 |
1.2037 | 174.0 | 12006 | 1.1649 |
1.1741 | 175.0 | 12075 | 1.1794 |
1.1921 | 176.0 | 12144 | 1.1584 |
1.1811 | 177.0 | 12213 | 1.1589 |
1.1956 | 178.0 | 12282 | 1.1555 |
1.1703 | 179.0 | 12351 | 1.1510 |
1.1727 | 180.0 | 12420 | 1.1363 |
1.1747 | 181.0 | 12489 | 1.1570 |
1.1524 | 182.0 | 12558 | 1.1655 |
1.1645 | 183.0 | 12627 | 1.1324 |
1.1549 | 184.0 | 12696 | 1.1529 |
1.1432 | 185.0 | 12765 | 1.1396 |
1.1552 | 186.0 | 12834 | 1.1406 |
1.1568 | 187.0 | 12903 | 1.1585 |
1.1407 | 188.0 | 12972 | 1.1417 |
1.1419 | 189.0 | 13041 | 1.1542 |
1.1451 | 190.0 | 13110 | 1.1330 |
1.1421 | 191.0 | 13179 | 1.1309 |
1.1283 | 192.0 | 13248 | 1.1271 |
1.1528 | 193.0 | 13317 | 1.1195 |
1.1367 | 194.0 | 13386 | 1.1300 |
1.1407 | 195.0 | 13455 | 1.1144 |
1.1456 | 196.0 | 13524 | 1.1584 |
1.1072 | 197.0 | 13593 | 1.1334 |
1.1081 | 198.0 | 13662 | 1.1378 |
1.1205 | 199.0 | 13731 | 1.1327 |
1.1275 | 200.0 | 13800 | 1.1346 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 5