# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """batch samplers that work with either random or sequential data samplers""" import math import os import sys import torch from torch.utils import data import numpy as np class RandomSampler(data.sampler.Sampler): r""" Based off of pytorch RandomSampler and DistributedSampler. Essentially a RandomSampler, but this class lets the user set an epoch like DistributedSampler Samples elements randomly. If without replacement, then sample from a shuffled dataset. If with replacement, then user can specify ``num_samples`` to draw. Arguments: data_source (Dataset): dataset to sample from num_samples (int): number of samples to draw, default=len(dataset) replacement (bool): samples are drawn with replacement if ``True``, default=False """ def __init__(self, data_source, replacement=False, num_samples=None): super(RandomSampler, self).__init__(data_source) self.data_source = data_source self.replacement = replacement self._num_samples = num_samples self.epoch = -1 if self._num_samples is not None and replacement is False: raise ValueError("With replacement=False, num_samples should not be specified, " "since a random permute will be performed.") if not isinstance(self.num_samples, int) or self.num_samples <= 0: raise ValueError("num_samples should be a positive integer " "value, but got num_samples={}".format(self.num_samples)) if not isinstance(self.replacement, bool): raise ValueError("replacement should be a boolean value, but got " "replacement={}".format(self.replacement)) @property def num_samples(self): # dataset size might change at runtime if self._num_samples is None: return len(self.data_source) return self._num_samples def __iter__(self): n = len(self.data_source) g = torch.Generator() if self.epoch >= 0: g.manual_seed(self.epoch) if self.replacement: for _ in range(self.num_samples // 32): yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=g).tolist() yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=g).tolist() else: yield from torch.randperm(n, generator=self.generator).tolist() def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch class DistributedSequentialSampler(data.sampler.Sampler): def __init__(self, num_samples, train_iters, batch_size, rank=-1, world_size=2): super().__init__(num_samples) if rank == -1: rank = 0 world_size = 1 self.num_samples = num_samples self.rank = rank self.world_size = world_size self.start_iter = 0 self.train_iters = train_iters self.batch_size = batch_size self.batch_bias = [i * (num_samples // batch_size) for i in range(batch_size)] def __iter__(self): for idx in range(self.start_iter, self.train_iters * 10): batch = [(idx + bias) % self.num_samples for bias in self.batch_bias] tbatch = self._batch(batch) yield tbatch def __len__(self): return self.train_iters def _batch(self, batch): """extracts samples only pertaining to this worker's batch""" start = self.rank*self.batch_size//self.world_size end = (self.rank+1)*self.batch_size//self.world_size return batch[start:end] class DistributedBatchSampler(data.sampler.BatchSampler): """ similar to normal implementation of distributed sampler, except implementation is at the batch sampler level, instead of just the sampler level. This allows wrapping of arbitrary data samplers (sequential, random, WeightedRandomSampler, etc.) with this batch sampler. """ def __init__(self, sampler, batch_size, drop_last, rank=-1, world_size=2, wrap_last=False, gradient_accumulation_steps=None): super(DistributedBatchSampler, self).__init__(sampler, batch_size, drop_last) if rank == -1: assert False, 'should not be here' self.rank = rank self.world_size = world_size self.sampler.wrap_around = 0 self.wrap_around = 0 self.wrap_last = wrap_last self.start_iter = 0 self.effective_batch_size = batch_size if gradient_accumulation_steps is None else batch_size * gradient_accumulation_steps def __iter__(self): batch = [] i = 0 for idx in self.data_iterator(self.sampler, wrap_around=False): batch.append(idx) if len(batch) == self.batch_size: tbatch = self._batch(batch) if i >= self.start_iter * self.effective_batch_size: yield tbatch self.start_iter = 0 i += len(batch) batch = [] batch_len = len(batch) if batch_len > 0 and not self.drop_last: if self.wrap_last: self.sampler.wrap_around -= (self.batch_size) self.wrap_around += (len(batch)) self.wrap_around %= self.batch_size yield self._batch(batch) if self.wrap_last: self.sampler.wrap_around += self.batch_size def data_iterator(self, _iter, wrap_around=False): """iterates through data and handles wrap around""" for i, idx in enumerate(_iter): if i < self.wrap_around%self.batch_size: continue if wrap_around: self.wrap_around += 1 self.wrap_around %= self.batch_size yield idx def _batch(self, batch): """extracts samples only pertaining to this worker's batch""" start = self.rank*self.batch_size//self.world_size end = (self.rank+1)*self.batch_size//self.world_size return batch[start:end] class DistributedMultiDatasetBatchSampler(data.sampler.BatchSampler): """ This is a modality-blended batch sampler which allows to sample a batch data from different dataset alternatively. """ def __init__(self, sampler, batch_size, dataset, drop_last, rank=-1, world_size=2, wrap_last=False, gradient_accumulation_steps=None): super(DistributedMultiDatasetBatchSampler, self).__init__(sampler, batch_size, drop_last) if rank == -1: assert False, 'should not be here' self.rank = rank self.world_size = world_size self.wrap_last = wrap_last self.drop_last = drop_last self.gradient_accumulation_steps = gradient_accumulation_steps self.dataset = dataset self.batch_size = batch_size self.number_of_datasets = len(dataset.datasets.datasets) self.largest_dataset_size = max([_cur_dataset.__len__() for _cur_dataset in dataset.datasets.datasets]) def __iter__(self): samplers_list = [] sampler_iterators = [] for dataset_idx in range(self.number_of_datasets): cur_dataset = self.dataset.datasets.datasets[dataset_idx] sampler = torch.utils.data.RandomSampler(cur_dataset) batch_sampler = DistributedBatchSampler(sampler, self.batch_size, self.drop_last, self.rank, self.world_size, self.wrap_last, self.gradient_accumulation_steps) samplers_list.append(batch_sampler) cur_sampler_iterator = batch_sampler.__iter__() sampler_iterators.append(cur_sampler_iterator) push_index_val = [0] + self.dataset.datasets.cumulative_sizes[:-1] step = self.batch_size * self.number_of_datasets samples_to_grab = self.batch_size # for this case we want to get all samples in dataset, this force us to resample from the smaller datasets epoch_samples = self.largest_dataset_size * self.number_of_datasets for _ in range(0, epoch_samples, step): for i in range(self.number_of_datasets): # for j in range(self.world_size): cur_batch_sampler = sampler_iterators[i] try: cur_sample_org = cur_batch_sampler.__next__() cur_samples = [x + push_index_val[i] for x in cur_sample_org] yield cur_samples except StopIteration: # got to the end of iterator - restart the iterator and continue to get samples # until reaching "epoch_samples" sampler_iterators[i] = samplers_list[i].__iter__() cur_batch_sampler = sampler_iterators[i] cur_sample_org = cur_batch_sampler.__next__() cur_samples = [x + push_index_val[i] for x in cur_sample_org] yield cur_samples