--- language: en pipeline_tag: zero-shot-classification tags: - distilbert datasets: - multi_nli metrics: - accuracy --- # ONNX convert typeform/distilbert-base-uncased-mnli ## Conversion of [typeform/distilbert-base-uncased-mnli](typeform/distilbert-base-uncased-mnli) This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on [Multi-Genre Natural Language Inference](https://huggingface.co/datasets/multi_nli) (MNLI) dataset for the zero-shot classification task. The model is not case-sensitive, i.e., it does not make a difference between "english" and "English". ## Training Training is done on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) AWS EC2 instance (1 NVIDIA Tesla V100 GPUs), with the following hyperparameters: ``` $ run_glue.py \ --model_name_or_path distilbert-base-uncased \ --task_name mnli \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --output_dir /tmp/distilbert-base-uncased_mnli/ ``` ## Evaluation results | Task | MNLI | MNLI-mm | |:----:|:----:|:----:| | | 82.0 | 82.0 |