--- license: other license_name: qwen language: - th - en library_name: transformers pipeline_tag: text-generation tags: - openthaigpt - qwen --- # ðŸ‡đ🇭 OpenThaiGPT 72b 1.5 Instruct ![OpenThaiGPT](https://1173516064-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FvvbWvIIe82Iv1yHaDBC5%2Fuploads%2Fb8eiMDaqiEQL6ahbAY0h%2Fimage.png?alt=media&token=6fce78fd-2cca-4c0a-9648-bd5518e644ce) [More Info](https://openthaigpt.aieat.or.th/) ðŸ‡đ🇭 **OpenThaiGPT 72b Version 1.5** is an advanced 72-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions. ## Highlights - **State-of-the-art Thai language LLM**, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs. - **Multi-turn conversation support** for extended dialogues. - **Retrieval Augmented Generation (RAG) compatibility** for enhanced response generation. - **Impressive context handling**: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions. ## Benchmark on [OpenThaiGPT Eval](https://huggingface.co/datasets/openthaigpt/openthaigpt_eval) ** Please take a look at ``openthaigpt/openthaigpt1.5-72b-instruct`` for this model's evaluation result. | **Exam names** | **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | **meta-llama/Llama-3.1-70B-Instruct** | **Qwen/Qwen2.5-72B-Instruct** | **openthaigpt/openthaigpt1.5-72b-instruct** | |:------------------------------:|:---------------------------------------------:|:-------------------------------------:|:-----------------------------:|:----------------------------------:| | **01_a_level** | 59.17% | 61.67% | 75.00% | 76.67% | | **02_tgat** | 46.00% | 40.00% | 48.00% | 46.00% | | **03_tpat1** | 52.50% | 50.00% | 55.00% | 55.00% | | **04_investment_consult** | 60.00% | 52.00% | 80.00% | 72.00% | | **05_facebook_beleble_th_200** | 87.50% | 88.00% | 90.00% | 90.00% | | **06_xcopa_th_200** | 84.50% | 85.50% | 90.00% | 90.50% | | **07_xnli2.0_th_200** | 62.50% | 63.00% | 65.50% | 70.50% | | **08_onet_m3_thai** | 76.00% | 56.00% | 76.00% | 84.00% | | **09_onet_m3_social** | 95.00% | 95.00% | 90.00% | 95.00% | | **10_onet_m3_math** | 43.75% | 25.00% | 37.50% | 37.50% | | **11_onet_m3_science** | 53.85% | 61.54% | 65.38% | 73.08% | | **12_onet_m3_english** | 93.33% | 93.33% | 96.67% | 96.67% | | **13_onet_m6_thai** | 55.38% | 60.00% | 60.00% | 56.92% | | **14_onet_m6_math** | 41.18% | 58.82% | 23.53% | 41.18% | | **15_onet_m6_social** | 67.27% | 76.36% | 63.64% | 65.45% | | **16_onet_m6_science** | 50.00% | 57.14% | 64.29% | 67.86% | | **17_onet_m6_english** | 73.08% | 82.69% | 86.54% | 90.38% | | **Micro Average** | 69.97% | 71.09% | 75.02% | 76.73% | Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval (Updated on: 30 September 2024) ## Benchmark on [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam) | Models | **Thai Exam (Acc)** | |:----------------------------------------------------------:|:-------------------:| | **api/claude-3-5-sonnet-20240620** | 69.2 | | **openthaigpt/openthaigpt1.5-72b-instruct*** | 64.07 | | **api/gpt-4o-2024-05-13** | 63.89 | | **hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4** | 63.54 | | **Qwen/Qwen2-72B-Instruct** | 58.23 | | **meta-llama/Meta-Llama-3.1-70B-Instruct** | 58.23 | | **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | 58.76 | | **Qwen/Qwen2.5-14B-Instruct** | 57.35 | | **api/gpt-4o-mini-2024-07-18** | 54.51 | | **openthaigpt/openthaigpt1.5-7b-instruct*** | 52.04 | | **SeaLLMs/SeaLLMs-v3-7B-Chat** | 51.33 | | **openthaigpt/openthaigpt-1.0.0-70b-chat** | 50.09 | * Evaluated by OpenThaiGPT team using [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam). ## Licenses * Built with Qwen * Qwen License: Allow **Research** and **Commercial uses** but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.
## Sponsors ## Supports - Official website: https://openthaigpt.aieat.or.th - Facebook page: https://web.facebook.com/groups/openthaigpt - A Discord server for discussion and support [here](https://discord.gg/rUTp6dfVUF) - E-mail: kobkrit@aieat.or.th ## Prompt Format Prompt format is based on ChatML. ``` <|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n ``` ### System prompt: ``` āļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ ``` ### Examples #### Single Turn Conversation Example ``` <|im_start|>system\nāļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ<|im_end|>\n<|im_start|>user\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš<|im_end|>\n<|im_start|>assistant\n ``` #### Single Turn Conversation with Context (RAG) Example ``` <|im_start|>system\nāļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ<|im_end|>\n<|im_start|>user\nāļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢ āđ€āļ›āđ‡āļ™āđ€āļĄāļ·āļ­āļ‡āļŦāļĨāļ§āļ‡ āļ™āļ„āļĢāđāļĨāļ°āļĄāļŦāļēāļ™āļ„āļĢāļ—āļĩāđˆāļĄāļĩāļ›āļĢāļ°āļŠāļēāļāļĢāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢāļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ—āļąāđ‰āļ‡āļŦāļĄāļ” 1,568.737 āļ•āļĢ.āļāļĄ. āļĄāļĩāļ›āļĢāļ°āļŠāļēāļāļĢāļ•āļēāļĄāļ—āļ°āđ€āļšāļĩāļĒāļ™āļĢāļēāļĐāļŽāļĢāļāļ§āđˆāļē 8 āļĨāđ‰āļēāļ™āļ„āļ™\nāļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢāļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļ—āđˆāļēāđ„āļĢāđˆ<|im_end|>\n<|im_start|>assistant\n ``` #### Multi Turn Conversation Example ##### First turn ``` <|im_start|>system\nāļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ<|im_end|>\n<|im_start|>user\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš<|im_end|>\n<|im_start|>assistant\n ``` ##### Second turn ``` <|im_start|>system\nāļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ<|im_end|>\n<|im_start|>user\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš<|im_end|>\n<|im_start|>assistant\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš āļĒāļīāļ™āļ”āļĩāļ•āđ‰āļ­āļ™āļĢāļąāļšāļ„āļĢāļąāļš āļ„āļļāļ“āļ•āđ‰āļ­āļ‡āļāļēāļĢāđƒāļŦāđ‰āļ‰āļąāļ™āļŠāđˆāļ§āļĒāļ­āļ°āđ„āļĢāļ„āļĢāļąāļš?<|im_end|>\n<|im_start|>user\nāļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢ āļŠāļ·āđˆāļ­āđ€āļ•āđ‡āļĄāļĒāļēāļ§āđ†āļ„āļ·āļ­āļ­āļ°āđ„āļĢ<|im_end|>\n<|im_start|>assistant\n ``` ##### Result ``` <|im_start|>system\nāļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ<|im_end|>\n<|im_start|>user\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš<|im_end|>\n<|im_start|>assistant\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš āļĒāļīāļ™āļ”āļĩāļ•āđ‰āļ­āļ™āļĢāļąāļšāļ„āļĢāļąāļš āļ„āļļāļ“āļ•āđ‰āļ­āļ‡āļāļēāļĢāđƒāļŦāđ‰āļ‰āļąāļ™āļŠāđˆāļ§āļĒāļ­āļ°āđ„āļĢāļ„āļĢāļąāļš?<|im_end|>\n<|im_start|>user\nāļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢ āļŠāļ·āđˆāļ­āđ€āļ•āđ‡āļĄāļĒāļēāļ§āđ†āļ„āļ·āļ­āļ­āļ°āđ„āļĢ<|im_end|>\n<|im_start|>assistant\nāļŠāļ·āđˆāļ­āđ€āļ•āđ‡āļĄāļ‚āļ­āļ‡āļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢāļ„āļ·āļ­ \"āļāļĢāļļāļ‡āđ€āļ—āļžāļĄāļŦāļēāļ™āļ„āļĢ āļ­āļĄāļĢāļĢāļąāļ•āļ™āđ‚āļāļŠāļīāļ™āļ—āļĢāđŒ āļĄāļŦāļīāļ™āļ—āļĢāļēāļĒāļļāļ˜āļĒāļē āļĄāļŦāļēāļ”āļīāļĨāļāļ āļž āļ™āļžāļĢāļąāļ•āļ™āļĢāļēāļŠāļ˜āļēāļ™āļĩāļšāļđāļĢāļĩāļĢāļĄāļĒāđŒ āļ­āļļāļ”āļĄāļĢāļēāļŠāļ™āļīāđ€āļ§āļĻāļ™āđŒāļĄāļŦāļēāļŠāļ–āļēāļ™ āļ­āļĄāļĢāļžāļīāļĄāļēāļ™āļ­āļ§āļ•āļēāļĢāļŠāļ–āļīāļ• āļŠāļąāļāļāļ°āļ—āļąāļ•āļ•āļīāļĒāļ§āļīāļĐāļ“āļļāļāļĢāļĢāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒ\" ``` ## How to use ### Huggingface ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "openthaigpt/openthaigpt1.5-72b-instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāļ„āļ·āļ­āļ­āļ°āđ„āļĢ" messages = [ {"role": "system", "content": "āļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### vLLM 1. Install VLLM (https://github.com/vllm-project/vllm) 2. Run server ```bash vllm serve openthaigpt/openthaigpt1.5-72b-instruct --tensor-parallel-size 4 ``` * Note, change ``--tensor-parallel-size 4`` to the amount of available GPU cards. 3. Run inference (CURL example) ```bash curl -X POST 'http://127.0.0.1:8000/v1/completions' \ -H 'Content-Type: application/json' \ -d '{ "model": ".", "prompt": "<|im_start|>system\nāļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļ‰āļĨāļēāļ”āđāļĨāļ°āļ‹āļ·āđˆāļ­āļŠāļąāļ•āļĒāđŒ<|im_end|>\n<|im_start|>user\nāļŠāļ§āļąāļŠāļ”āļĩāļ„āļĢāļąāļš<|im_end|>\n<|im_start|>assistant\n", "max_tokens": 512, "temperature": 0.7, "top_p": 0.8, "top_k": 40, "stop": ["<|im_end|>"] }' ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` ### GPU Memory Requirements | **Number of Parameters** | **FP 16 bits** | **8 bits (Quantized)** | **4 bits (Quantized)** | **Example Graphic Card for 4 bits** | |------------------|----------------|------------------------|------------------------|---------------------------------------------| | **7b** | 24 GB | 12 GB | 6 GB | Nvidia RTX 4060 8GB | | **13b** | 48 GB | 24 GB | 12 GB | Nvidia RTX 4070 16GB | | **72b** | 192 GB | 96 GB | 48 GB | Nvidia RTX 4090 24GB x 2 cards | ### Authors * Sumeth Yuenyong (sumeth.yue@mahidol.edu) * Kobkrit Viriyayudhakorn (kobkrit@aieat.or.th) * Apivadee Piyatumrong (apivadee.piy@nectec.or.th) * Jillaphat Jaroenkantasima (autsadang41@gmail.com) * Thaweewat Rugsujarit (thaweewr@scg.com) * Norapat Buppodom (new@norapat.com) * Koravich Sangkaew (kwankoravich@gmail.com) * Peerawat Rojratchadakorn (peerawat.roj@gmail.com) * Surapon Nonesung (nonesungsurapon@gmail.com) * Chanon Utupon (chanon.utupon@gmail.com) * Sadhis Wongprayoon (sadhis.tae@gmail.com) * Nucharee Thongthungwong (nuchhub@hotmail.com) * Chawakorn Phiantham (mondcha1507@gmail.com) * Patteera Triamamornwooth (patt.patteera@gmail.com) * Nattarika Juntarapaoraya (natt.juntara@gmail.com) * Kriangkrai Saetan (kraitan.ss21@gmail.com) * Pitikorn Khlaisamniang (pitikorn32@gmail.com) Disclaimer: Provided responses are not guaranteed.