from transformers import CamembertConfig class CLIPTextCamembertConfig(CamembertConfig): # ref : https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased/blob/main/config.json model_type = "clip_text_camembert" def __init__( self, vocab_size=25005, hidden_size=768, intermediate_size=3072, projection_dim=512, num_hidden_layers=12, num_attention_heads=12, max_position_embeddings=512, hidden_act="gelu", layer_norm_eps=1e-12, attention_dropout=0.1, initializer_range=0.02, initializer_factor=1.0, pad_token_id=1, bos_token_id=0, eos_token_id=2, type_vocab_size=1, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.type_vocab_size = type_vocab_size self.auto_map = { "AutoConfig": "configuration_clip_camembert.CLIPTextCamembertConfig", "AutoModel": "modeling_clip_camembert.CLIPTextCamembertModelWithProjection", }