--- language: en license: apache-2.0 tags: - learned sparse - opensearch - transformers - retrieval - passage-retrieval - document-expansion - bag-of-words --- # opensearch-neural-sparse-encoding-v1 This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors. In the real-world use case, the search performance of opensearch-neural-sparse-encoding-v1 is comparable to BM25. OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API. ## Usage (HuggingFace) This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API. ```python import json import itertools import torch from transformers import AutoModelForMaskedLM, AutoTokenizer from transformers.utils import cached_path,hf_bucket_url # get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size def get_sparse_vector(feature, output): values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1) values = torch.log(1 + torch.relu(values)) values[:,special_token_ids] = 0 return values # transform the sparse vector to a dict of (token, weight) def transform_sparse_vector_to_dict(sparse_vector): sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True) non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist() number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist() tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()] output = [] end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample)) for i in range(len(end_idxs)-1): token_strings = tokens[end_idxs[i]:end_idxs[i+1]] weights = non_zero_values[end_idxs[i]:end_idxs[i+1]] output.append(dict(zip(token_strings, weights))) return output # download the idf file from model hub. idf is used to give weights for query tokens def get_tokenizer_idf(tokenizer): url = hf_bucket_url("opensearch-project/opensearch-neural-sparse-encoding-doc-v1","idf.json") local_cached_path = cached_path(url) with open(local_cached_path) as f: idf = json.load(f) idf_vector = [0]*tokenizer.vocab_size for token,weight in idf.items(): _id = tokenizer._convert_token_to_id_with_added_voc(token) idf_vector[_id]=weight return torch.tensor(idf_vector) # load the model model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1") tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1") idf = get_tokenizer_idf(tokenizer) # set the special tokens and id_to_token transform for post-process special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()] get_sparse_vector.special_token_ids = special_token_ids id_to_token = ["" for i in range(tokenizer.vocab_size)] for token, _id in tokenizer.vocab.items(): id_to_token[_id] = token transform_sparse_vector_to_dict.id_to_token = id_to_token query = "What's the weather in ny now?" document = "Currently New York is rainy." # encode the query feature_query = tokenizer([query], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False) input_ids = feature_query["input_ids"] batch_size = input_ids.shape[0] query_vector = torch.zeros(batch_size, tokenizer.vocab_size) query_vector[torch.arange(batch_size).unsqueeze(-1), input_ids] = 1 query_sparse_vector = query_vector*idf # encode the document feature_document = tokenizer([document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False) output = model(**feature_document)[0] document_sparse_vector = get_sparse_vector(feature_document, output) # get similarity score sim_score = torch.matmul(query_sparse_vector[0],document_sparse_vector[0]) print(sim_score) # tensor(12.8465, grad_fn=) query_token_weight = transform_sparse_vector_to_dict(query_sparse_vector)[0] document_query_token_weight = transform_sparse_vector_to_dict(document_sparse_vector)[0] for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True): if token in document_query_token_weight: print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token)) # result: # score in query: 5.7729, score in document: 1.0552, token: ny # score in query: 4.5684, score in document: 1.1697, token: weather # score in query: 3.5895, score in document: 0.3932, token: now ``` The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match. ## Performance This model is trained on MS MARCO dataset. The search relevance score of it can be found here (Neural sparse search document-only) https://opensearch.org/blog/improving-document-retrieval-with-sparse-semantic-encoders/.