--- tags: - spacy - token-classification widget: - text: "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984" - text: "In The High Court Of Kerala At Ernakulam\n\nCrl Mc No. 1622 of 2006()\n\n\n1. T.R.Ajayan, S/O. O.Raman,\n ... Petitioner\n\n Vs\n\n\n\n1. M.Ravindran,\n ... Respondent\n\n2. Mrs. Nirmala Dinesh, W/O. Dinesh,\n\n For Petitioner :Sri.A.Kumar\n\n For Respondent :Smt.M.K.Pushpalatha\n\nThe Hon'ble Mr. Justice P.R.Raman\nThe Hon'ble Mr. Justice V.K.Mohanan\n\n Dated :07/01/2008\n\n O R D E R\n" language: - en license: mit model-index: - name: en_legal_ner_trf results: - task: type: token-classification name: Named Entity Recognition dataset: type: Named Entity Recognition name: InLegalNER split: Test metrics: - type: F1-Score value: 90.616 name: Test F1-Score --- # To Update [AUTHORS] "[PAPER NAME]". [PAPER DETAILS] [PAPER LINK] --- Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on [spacy](https://github.com/explosion/spaCy). ### Scores | Type | Score | | --- | --- | | **F1-Score** | **90.616** | | `Precision` | 90.239 | | `Recall` | 90.997 | | Feature | Description | | --- | --- | | **Name** | `en_legal_ner_trf` | | **Version** | `3.2.0` | | **spaCy** | `>=3.2.2,<3.3.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)| | **License** | `MIT` | | **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) | ## Load Pretrained Model Install the model using pip ```sh pip install https://huggingface.co/opennyaiorg/en_legal_ner_trf/resolve/main/en_legal_ner_trf-any-py3-none-any.whl ``` Using pretrained NER model ```python # Using spacy.load(). import spacy nlp = spacy.load("en_legal_ner_trf") text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984" doc = nlp(text) # Print indentified entites for ent in doc.ents: print(ent,ent.label_) ##OUTPUT #Section 319 PROVISION #Cr.P.C. STATUTE #G. Sambiah RESPONDENT #20th June 1984 DATE ``` ### Label Scheme
View label scheme (14 labels for 1 components) | ENTITY | BELONGS TO | | --- | --- | | `LAWYER` | PREAMBLE | | `COURT` | PREAMBLE, JUDGEMENT | | `JUDGE` | PREAMBLE, JUDGEMENT | | `PETITIONER` | PREAMBLE, JUDGEMENT | | `RESPONDENT` | PREAMBLE, JUDGEMENT | | `CASE_NUMBER` | JUDGEMENT | | `GPE` | JUDGEMENT | | `DATE` | JUDGEMENT | | `ORG` | JUDGEMENT | | `STATUTE` | JUDGEMENT | | `WITNESS` | JUDGEMENT | | `PRECEDENT` | JUDGEMENT | | `PROVISION` | JUDGEMENT | | `OTHER_PERSON` | JUDGEMENT |
## Author - Publication ``` [CITATION DETAILS] ```