--- language: - zh - en base_model: openbmb/MiniCPM-2B-sft-bf16 --- ## MiniCPM-Embedding **MiniCPM-Embedding** 是面壁智能与清华大学自然语言处理实验室(THUNLP)共同开发的中英双语言文本嵌入模型,有如下特点: - 出色的中文、英文检索能力。 - 出色的中英跨语言检索能力。 MiniCPM-Embedding 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。 欢迎关注 RAG 套件系列: - 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) - 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) - 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) **MiniCPM-Embedding** is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. and THUNLP, featuring: - Exceptional Chinese and English retrieval capabilities. - Outstanding cross-lingual retrieval capabilities between Chinese and English. MiniCPM-Embedding is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data. We also invite you to explore the RAG toolkit series: - Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) - Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) - LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) [1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904. ## 模型信息 Model Information - 模型大小:2.4B - 嵌入维度:2304 - 最大输入token数:512 - Model Size: 2.4B - Embedding Dimension: 2304 - Max Input Tokens: 512 ## 使用方法 Usage ### 输入格式 Input Format 本模型支持 query 侧指令,格式如下: MiniCPM-Embedding supports query-side instructions in the following format: ``` Instruction: {{ instruction }} Query: {{ query }} ``` 例如: For example: ``` Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么? ``` ``` Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast. ``` 也可以不提供指令,即采取如下格式: MiniCPM-Embedding also works in instruction-free mode in the following format: ``` Query: {{ query }} ``` 我们在 BEIR 与 C-MTEB/Retrieval 上测试时使用的指令见 `instructions.json`,其他测试不使用指令。文档侧直接输入文档原文。 When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions. On the document side, we directly use the bare document as the input. ### 环境要求 Requirements ``` transformers==4.37.2 flash-attn>2.3.5 ``` ### 示例脚本 Demo ```python from transformers import AutoModel, AutoTokenizer import torch import torch.nn.functional as F model_name = "openbmb/MiniCPM-Embedding" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") model.eval() def weighted_mean_pooling(hidden, attention_mask): attention_mask_ = attention_mask * attention_mask.cumsum(dim=1) s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1) d = attention_mask_.sum(dim=1, keepdim=True).float() reps = s / d return reps @torch.no_grad() def encode(input_texts): batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to("cuda") outputs = model(**batch_dict) attention_mask = batch_dict["attention_mask"] hidden = outputs.last_hidden_state reps = weighted_mean_pooling(hidden, attention_mask) embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy() return embeddings queries = ["中国的首都是哪里?"] passages = ["beijing", "shanghai"] INSTRUCTION = "Query: " queries = [INSTRUCTION + query for query in queries] embeddings_query = encode(queries) embeddings_doc = encode(passages) scores = (embeddings_query @ embeddings_doc.T) print(scores.tolist()) # [[0.3535913825035095, 0.18596848845481873]] ``` ## 实验结果 Evaluation Results ### 中文与英文检索结果 CN/EN Retrieval Results | 模型 Model | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) | |------------------------------|-------------------|---------------| | bge-large-zh-v1.5 | 70.46 | - | | gte-large-zh | 72.49 | - | | Zhihui_LLM_Embedding | 76.74 | | | bge-large-en-v1.5 | - | 54.29 | | gte-en-large-v1.5 | - | 57.91 | | NV-Retriever-v1 | - | 60.9 | | bge-en-icl | - | 62.16 | | NV-Embed-v2 | - | 62.65 | | me5-large | 63.66 | 51.43 | | bge-m3(Dense) | 65.43 | 48.82 | | gte-multilingual-base(Dense) | 71.95 | 51.08 | | gte-Qwen2-1.5B-instruct | 71.86 | 58.29 | | gte-Qwen2-7B-instruct | 76.03 | 60.25 | | bge-multilingual-gemma2 | 73.73 | 59.24 | | MiniCPM-Embedding | **76.76** | 58.56 | | MiniCPM-Embedding+MiniCPM-Reranker | 77.08 | 61.61 | ### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results | 模型 Model | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) | |------------------------------|--------------------|--------------------|--------------------| | me5-large | 44.3 | 9.01 | 25.33 | | bge-m3(Dense) | 66.4 | 30.49 | 41.09 | | gte-multilingual-base(Dense) | 68.2 | 39.46 | 45.86 | | gte-Qwen2-1.5B-instruct | 68.52 | 49.11 | 45.05 | | gte-Qwen2-7B-instruct | 68.27 | 49.14 | 49.6 | | MiniCPM-Embedding | **72.95** | **52.65** | **49.95** | | MiniCPM-Embedding+MiniCPM-Reranker | 74.33 | 53.21 | 54.12 | ## 许可证 License - 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。 - MiniCPM-Embedding 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。 - MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。 * The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. * The usage of MiniCPM-Embedding model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md). * The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Embedding weights are also available for free commercial use.