Update gptx_tokenizer.py
Browse files- gptx_tokenizer.py +4 -917
gptx_tokenizer.py
CHANGED
@@ -9,7 +9,6 @@ from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
|
|
9 |
import sentencepiece as spm
|
10 |
import numpy as np
|
11 |
import torch
|
12 |
-
|
13 |
from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
|
14 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
15 |
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
|
@@ -246,923 +245,11 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
246 |
Returns:
|
247 |
str: Decoded string.
|
248 |
"""
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
import warnings
|
254 |
-
from pathlib import Path
|
255 |
-
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
|
256 |
-
|
257 |
-
import sentencepiece as spm
|
258 |
-
from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
|
259 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
260 |
-
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
|
261 |
-
|
262 |
-
|
263 |
-
REPO_ID = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
|
264 |
-
|
265 |
-
class HFGPTXTokenizer(PreTrainedTokenizer):
|
266 |
-
"""
|
267 |
-
A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer.
|
268 |
-
It is specifically designed to work with SentencePiece models and integrates
|
269 |
-
with Hugging Face's tokenizer utilities.
|
270 |
-
"""
|
271 |
-
|
272 |
-
model_file_glob = "*tokenizer.json"
|
273 |
-
vocab_files_names = {"tokenizer_file": "tokenizer.json"}
|
274 |
-
decode_kwargs: List[str] = []
|
275 |
-
|
276 |
-
def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False):
|
277 |
-
"""
|
278 |
-
Encode a given text using the tokenizer.
|
279 |
-
|
280 |
-
Args:
|
281 |
-
text (str): The text to encode.
|
282 |
-
return_tokens (bool): If True, returns token strings instead of token IDs.
|
283 |
-
is_continuation (bool): If True, uses a continuation tokenizer (if available).
|
284 |
-
Returns:
|
285 |
-
List[int] or List[str]: Encoded text as a list of token IDs or token strings.
|
286 |
-
"""
|
287 |
-
assert self.tok is not None, "No tokenizer is currently loaded"
|
288 |
-
|
289 |
-
# Variant with additional sp processor:
|
290 |
-
tokenizer = self.continuation_tokenizer if is_continuation else self.tok
|
291 |
-
|
292 |
-
if return_tokens:
|
293 |
-
return tokenizer.encode_as_pieces(text)
|
294 |
-
else:
|
295 |
-
return tokenizer.encode(text)
|
296 |
-
|
297 |
-
def create_list_of_special_tokens(self) -> List[str]:
|
298 |
-
"""
|
299 |
-
Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
|
300 |
-
and 256 additional placeholder tokens.
|
301 |
-
Returns:
|
302 |
-
List[str]: List of special tokens.
|
303 |
-
"""
|
304 |
-
return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [
|
305 |
-
f"<placeholder_tok_{i}>" for i in range(256)
|
306 |
-
]
|
307 |
-
|
308 |
-
def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
|
309 |
-
if not os.path.isfile(config_path):
|
310 |
-
config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
|
311 |
-
if not config_path:
|
312 |
-
config_path = self._download_config_from_hub(repo_id=repo_id)
|
313 |
-
|
314 |
-
return config_path
|
315 |
-
|
316 |
-
|
317 |
-
def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None):
|
318 |
-
"""
|
319 |
-
Load the tokenizer model from a file or download it from a repository.
|
320 |
-
|
321 |
-
Args:
|
322 |
-
model_file_or_name (str): Path to the model file or the model name.
|
323 |
-
repo_id (str, optional): Repository ID from which to download the model file.
|
324 |
-
|
325 |
-
Returns:
|
326 |
-
spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance.
|
327 |
-
|
328 |
-
Raises:
|
329 |
-
ValueError: If repo_id is not provided when model_file_or_name is not a file.
|
330 |
-
OSError: If the model file cannot be loaded or downloaded.
|
331 |
-
"""
|
332 |
-
if not os.path.isfile(model_file_or_name):
|
333 |
-
model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
|
334 |
-
if not model_file_or_name:
|
335 |
-
model_file_or_name = self._download_model_from_hub(repo_id=repo_id)
|
336 |
-
|
337 |
-
try:
|
338 |
-
return spm.SentencePieceProcessor(model_file=model_file_or_name)
|
339 |
-
except Exception as e:
|
340 |
-
raise OSError(f"Failed to load tokenizer model: {str(e)}")
|
341 |
-
|
342 |
-
def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
|
343 |
-
try:
|
344 |
-
# List all files in the repo
|
345 |
-
repo_files = list_repo_files(repo_id)
|
346 |
-
|
347 |
-
# Find the tokenizer model file
|
348 |
-
tokenizer_files = [f for f in repo_files if f.endswith('.model')]
|
349 |
-
if not tokenizer_files:
|
350 |
-
raise FileNotFoundError(f"No .model file found in repository {repo_id}")
|
351 |
-
|
352 |
-
# Use the first .model file found
|
353 |
-
model_file = tokenizer_files[0]
|
354 |
-
print(f"Found tokenizer model file: {model_file}")
|
355 |
-
|
356 |
-
# Download the file
|
357 |
-
model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
|
358 |
-
print(f"Downloaded tokenizer model to: {model_file_or_name}")
|
359 |
-
except Exception as e:
|
360 |
-
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
361 |
-
|
362 |
-
return model_file_or_name
|
363 |
-
|
364 |
-
def _download_config_from_hub(self, repo_id: str):
|
365 |
-
if repo_id is None:
|
366 |
-
raise ValueError("repo_id must be provided if config_path is not a local file")
|
367 |
-
|
368 |
-
try:
|
369 |
-
# List all files in the repo
|
370 |
-
repo_files = list_repo_files(repo_id)
|
371 |
-
|
372 |
-
# Find the tokenizer config file
|
373 |
-
tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
|
374 |
-
if not tokenizer_files:
|
375 |
-
raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")
|
376 |
-
|
377 |
-
# Use the first tokenizer_config.json file found
|
378 |
-
tokenizer_config_file = tokenizer_files[0]
|
379 |
-
print(f"Found tokenizer config file: {tokenizer_config_file}")
|
380 |
-
|
381 |
-
# Download the file
|
382 |
-
tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
|
383 |
-
print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
|
384 |
-
return tokenizer_config_file_or_name
|
385 |
-
except Exception as e:
|
386 |
-
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
387 |
-
def __init__(
|
388 |
-
self,
|
389 |
-
model_path: Optional[str] = None,
|
390 |
-
config_path: Optional[str] = None,
|
391 |
-
**kwargs: Any,
|
392 |
-
) -> None:
|
393 |
-
"""
|
394 |
-
Initialize the tokenizer.
|
395 |
-
Args:
|
396 |
-
model_path (Optional[str]): Path to the tokenizer model file.
|
397 |
-
config_path (Optional[str]): Path to the tokenizer configuration file.
|
398 |
-
**kwargs: Additional keyword arguments passed to the superclass.
|
399 |
-
This method also ensures backward compatibility by setting
|
400 |
-
`clean_up_tokenization_spaces` to False by default.
|
401 |
-
"""
|
402 |
-
# Prevent cleanup of tokenization spaces to maintain backward compatibility
|
403 |
-
self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False)
|
404 |
-
self.vocab = None
|
405 |
-
cp_path = kwargs.get("name_or_path", ".")
|
406 |
-
if model_path is None:
|
407 |
-
model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"])
|
408 |
-
self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID)
|
409 |
-
|
410 |
-
super().__init__(**kwargs)
|
411 |
-
|
412 |
-
# Specify special tokens which we know the value of.
|
413 |
-
# EOD from `tok` is used as what is called EOS in HuggingFace.
|
414 |
-
# Since there is no corresponding mapping for EOS from `tok` in
|
415 |
-
# HuggingFace, it is treated as an additional special token.
|
416 |
-
# Same for all other special tokens.
|
417 |
-
|
418 |
-
|
419 |
-
self.unk_token = "<unk>"
|
420 |
-
self.eos_token = "</s>"
|
421 |
-
self.bos_token = "<s>"
|
422 |
-
self.pad_token = "<pad>"
|
423 |
-
self.eod_token = "<eod>"
|
424 |
|
425 |
-
self.additional_special_tokens = self.create_list_of_special_tokens()
|
426 |
-
|
427 |
-
if config_path is None:
|
428 |
-
config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE)
|
429 |
-
|
430 |
-
if os.path.isfile(config_path):
|
431 |
-
self.tokenizer_config = self.load_json(Path(config_path))
|
432 |
-
else: # Load from repo
|
433 |
-
self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID)))
|
434 |
-
|
435 |
-
@property
|
436 |
-
def vocab_size(self) -> int:
|
437 |
-
"""
|
438 |
-
Get the size of the tokenizer vocabulary.
|
439 |
-
Returns:
|
440 |
-
int: The size of the vocabulary.
|
441 |
-
"""
|
442 |
-
return self.tok.GetPieceSize()
|
443 |
-
|
444 |
-
def get_vocab(self) -> Dict[str, int]:
|
445 |
-
"""
|
446 |
-
Get the vocabulary as a dictionary mapping token strings to their IDs.
|
447 |
-
Returns:
|
448 |
-
Dict[str, int]: Vocabulary mapping.
|
449 |
-
"""
|
450 |
-
if self.vocab is None:
|
451 |
-
self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)}
|
452 |
-
return self.vocab
|
453 |
-
|
454 |
-
def _tokenize(self, text: str, **kwargs) -> List[int]:
|
455 |
-
"""
|
456 |
-
Tokenize the input text.
|
457 |
-
Args:
|
458 |
-
text (str): Text to tokenize.
|
459 |
-
**kwargs: Additional keyword arguments.
|
460 |
-
Returns:
|
461 |
-
List[int]: List of token IDs.
|
462 |
-
"""
|
463 |
-
return_tokens = kwargs.pop("return_tokens", True)
|
464 |
-
return self._encode(text, return_tokens=return_tokens, **kwargs)
|
465 |
-
|
466 |
-
def _convert_token_to_id(self, token: str) -> int:
|
467 |
-
"""
|
468 |
-
Convert a token string to its corresponding ID.
|
469 |
-
Args:
|
470 |
-
token (str): The token to convert.
|
471 |
-
Returns:
|
472 |
-
int: The token's ID.
|
473 |
-
Raises:
|
474 |
-
ValueError: If the token is unknown and cannot be encoded to a single ID.
|
475 |
-
"""
|
476 |
-
return self.tok.PieceToId(token)
|
477 |
-
|
478 |
-
|
479 |
-
def decode(
|
480 |
-
self,
|
481 |
-
token_ids: Union[List[int], List[List[int]]],
|
482 |
-
num_threads: Optional[int] = None,
|
483 |
-
skip_special_tokens: bool = False,
|
484 |
-
clean_up_tokenization_spaces: bool = False,
|
485 |
-
) -> str:
|
486 |
-
"""
|
487 |
-
Decode a list of token IDs into a string.
|
488 |
-
Args:
|
489 |
-
token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
|
490 |
-
num_threads (Optional[int]): Number of threads to use for decoding.
|
491 |
-
Returns:
|
492 |
-
str: Decoded string.
|
493 |
-
"""
|
494 |
-
from __future__ import annotations
|
495 |
-
|
496 |
-
import json
|
497 |
-
import os
|
498 |
-
import warnings
|
499 |
-
from pathlib import Path
|
500 |
-
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
|
501 |
-
|
502 |
-
import sentencepiece as spm
|
503 |
-
from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
|
504 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
505 |
-
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
|
506 |
-
|
507 |
-
|
508 |
-
REPO_ID = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
|
509 |
-
|
510 |
-
class HFGPTXTokenizer(PreTrainedTokenizer):
|
511 |
-
"""
|
512 |
-
A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer.
|
513 |
-
It is specifically designed to work with SentencePiece models and integrates
|
514 |
-
with Hugging Face's tokenizer utilities.
|
515 |
-
"""
|
516 |
-
|
517 |
-
model_file_glob = "*tokenizer.json"
|
518 |
-
vocab_files_names = {"tokenizer_file": "tokenizer.json"}
|
519 |
-
decode_kwargs: List[str] = []
|
520 |
-
|
521 |
-
def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False):
|
522 |
-
"""
|
523 |
-
Encode a given text using the tokenizer.
|
524 |
-
|
525 |
-
Args:
|
526 |
-
text (str): The text to encode.
|
527 |
-
return_tokens (bool): If True, returns token strings instead of token IDs.
|
528 |
-
is_continuation (bool): If True, uses a continuation tokenizer (if available).
|
529 |
-
Returns:
|
530 |
-
List[int] or List[str]: Encoded text as a list of token IDs or token strings.
|
531 |
-
"""
|
532 |
-
assert self.tok is not None, "No tokenizer is currently loaded"
|
533 |
-
|
534 |
-
# Variant with additional sp processor:
|
535 |
-
tokenizer = self.continuation_tokenizer if is_continuation else self.tok
|
536 |
-
|
537 |
-
if return_tokens:
|
538 |
-
return tokenizer.encode_as_pieces(text)
|
539 |
-
else:
|
540 |
-
return tokenizer.encode(text)
|
541 |
-
|
542 |
-
def create_list_of_special_tokens(self) -> List[str]:
|
543 |
-
"""
|
544 |
-
Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
|
545 |
-
and 256 additional placeholder tokens.
|
546 |
-
Returns:
|
547 |
-
List[str]: List of special tokens.
|
548 |
-
"""
|
549 |
-
return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [
|
550 |
-
f"<placeholder_tok_{i}>" for i in range(256)
|
551 |
-
]
|
552 |
-
|
553 |
-
def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
|
554 |
-
if not os.path.isfile(config_path):
|
555 |
-
config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
|
556 |
-
if not config_path:
|
557 |
-
config_path = self._download_config_from_hub(repo_id=repo_id)
|
558 |
-
|
559 |
-
return config_path
|
560 |
-
|
561 |
-
|
562 |
-
def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None):
|
563 |
-
"""
|
564 |
-
Load the tokenizer model from a file or download it from a repository.
|
565 |
-
|
566 |
-
Args:
|
567 |
-
model_file_or_name (str): Path to the model file or the model name.
|
568 |
-
repo_id (str, optional): Repository ID from which to download the model file.
|
569 |
-
|
570 |
-
Returns:
|
571 |
-
spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance.
|
572 |
-
|
573 |
-
Raises:
|
574 |
-
ValueError: If repo_id is not provided when model_file_or_name is not a file.
|
575 |
-
OSError: If the model file cannot be loaded or downloaded.
|
576 |
-
"""
|
577 |
-
if not os.path.isfile(model_file_or_name):
|
578 |
-
model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
|
579 |
-
if not model_file_or_name:
|
580 |
-
model_file_or_name = self._download_model_from_hub(repo_id=repo_id)
|
581 |
-
|
582 |
-
try:
|
583 |
-
return spm.SentencePieceProcessor(model_file=model_file_or_name)
|
584 |
-
except Exception as e:
|
585 |
-
raise OSError(f"Failed to load tokenizer model: {str(e)}")
|
586 |
-
|
587 |
-
def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
|
588 |
-
try:
|
589 |
-
# List all files in the repo
|
590 |
-
repo_files = list_repo_files(repo_id)
|
591 |
-
|
592 |
-
# Find the tokenizer model file
|
593 |
-
tokenizer_files = [f for f in repo_files if f.endswith('.model')]
|
594 |
-
if not tokenizer_files:
|
595 |
-
raise FileNotFoundError(f"No .model file found in repository {repo_id}")
|
596 |
-
|
597 |
-
# Use the first .model file found
|
598 |
-
model_file = tokenizer_files[0]
|
599 |
-
print(f"Found tokenizer model file: {model_file}")
|
600 |
-
|
601 |
-
# Download the file
|
602 |
-
model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
|
603 |
-
print(f"Downloaded tokenizer model to: {model_file_or_name}")
|
604 |
-
except Exception as e:
|
605 |
-
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
606 |
-
|
607 |
-
return model_file_or_name
|
608 |
-
|
609 |
-
def _download_config_from_hub(self, repo_id: str):
|
610 |
-
if repo_id is None:
|
611 |
-
raise ValueError("repo_id must be provided if config_path is not a local file")
|
612 |
-
|
613 |
-
try:
|
614 |
-
# List all files in the repo
|
615 |
-
repo_files = list_repo_files(repo_id)
|
616 |
-
|
617 |
-
# Find the tokenizer config file
|
618 |
-
tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
|
619 |
-
if not tokenizer_files:
|
620 |
-
raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")
|
621 |
-
|
622 |
-
# Use the first tokenizer_config.json file found
|
623 |
-
tokenizer_config_file = tokenizer_files[0]
|
624 |
-
print(f"Found tokenizer config file: {tokenizer_config_file}")
|
625 |
-
|
626 |
-
# Download the file
|
627 |
-
tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
|
628 |
-
print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
|
629 |
-
return tokenizer_config_file_or_name
|
630 |
-
except Exception as e:
|
631 |
-
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
632 |
-
def __init__(
|
633 |
-
self,
|
634 |
-
model_path: Optional[str] = None,
|
635 |
-
config_path: Optional[str] = None,
|
636 |
-
**kwargs: Any,
|
637 |
-
) -> None:
|
638 |
-
"""
|
639 |
-
Initialize the tokenizer.
|
640 |
-
Args:
|
641 |
-
model_path (Optional[str]): Path to the tokenizer model file.
|
642 |
-
config_path (Optional[str]): Path to the tokenizer configuration file.
|
643 |
-
**kwargs: Additional keyword arguments passed to the superclass.
|
644 |
-
This method also ensures backward compatibility by setting
|
645 |
-
`clean_up_tokenization_spaces` to False by default.
|
646 |
-
"""
|
647 |
-
# Prevent cleanup of tokenization spaces to maintain backward compatibility
|
648 |
-
self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False)
|
649 |
-
self.vocab = None
|
650 |
-
cp_path = kwargs.get("name_or_path", ".")
|
651 |
-
if model_path is None:
|
652 |
-
model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"])
|
653 |
-
self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID)
|
654 |
-
|
655 |
-
super().__init__(**kwargs)
|
656 |
-
|
657 |
-
# Specify special tokens which we know the value of.
|
658 |
-
# EOD from `tok` is used as what is called EOS in HuggingFace.
|
659 |
-
# Since there is no corresponding mapping for EOS from `tok` in
|
660 |
-
# HuggingFace, it is treated as an additional special token.
|
661 |
-
# Same for all other special tokens.
|
662 |
-
|
663 |
-
|
664 |
-
self.unk_token = "<unk>"
|
665 |
-
self.eos_token = "</s>"
|
666 |
-
self.bos_token = "<s>"
|
667 |
-
self.pad_token = "<pad>"
|
668 |
-
self.eod_token = "<eod>"
|
669 |
-
|
670 |
-
self.additional_special_tokens = self.create_list_of_special_tokens()
|
671 |
-
|
672 |
-
if config_path is None:
|
673 |
-
config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE)
|
674 |
-
|
675 |
-
if os.path.isfile(config_path):
|
676 |
-
self.tokenizer_config = self.load_json(Path(config_path))
|
677 |
-
else: # Load from repo
|
678 |
-
self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID)))
|
679 |
-
|
680 |
-
@property
|
681 |
-
def vocab_size(self) -> int:
|
682 |
-
"""
|
683 |
-
Get the size of the tokenizer vocabulary.
|
684 |
-
Returns:
|
685 |
-
int: The size of the vocabulary.
|
686 |
-
"""
|
687 |
-
return self.tok.GetPieceSize()
|
688 |
-
|
689 |
-
def get_vocab(self) -> Dict[str, int]:
|
690 |
-
"""
|
691 |
-
Get the vocabulary as a dictionary mapping token strings to their IDs.
|
692 |
-
Returns:
|
693 |
-
Dict[str, int]: Vocabulary mapping.
|
694 |
-
"""
|
695 |
-
if self.vocab is None:
|
696 |
-
self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)}
|
697 |
-
return self.vocab
|
698 |
-
|
699 |
-
def _tokenize(self, text: str, **kwargs) -> List[int]:
|
700 |
-
"""
|
701 |
-
Tokenize the input text.
|
702 |
-
Args:
|
703 |
-
text (str): Text to tokenize.
|
704 |
-
**kwargs: Additional keyword arguments.
|
705 |
-
Returns:
|
706 |
-
List[int]: List of token IDs.
|
707 |
-
"""
|
708 |
-
return_tokens = kwargs.pop("return_tokens", True)
|
709 |
-
return self._encode(text, return_tokens=return_tokens, **kwargs)
|
710 |
-
|
711 |
-
def _convert_token_to_id(self, token: str) -> int:
|
712 |
-
"""
|
713 |
-
Convert a token string to its corresponding ID.
|
714 |
-
Args:
|
715 |
-
token (str): The token to convert.
|
716 |
-
Returns:
|
717 |
-
int: The token's ID.
|
718 |
-
Raises:
|
719 |
-
ValueError: If the token is unknown and cannot be encoded to a single ID.
|
720 |
-
"""
|
721 |
-
return self.tok.PieceToId(token)
|
722 |
-
|
723 |
-
|
724 |
-
def decode(
|
725 |
-
self,
|
726 |
-
token_ids: Union[List[int], List[List[int]]],
|
727 |
-
num_threads: Optional[int] = None,
|
728 |
-
skip_special_tokens: bool = False,
|
729 |
-
clean_up_tokenization_spaces: bool = False,
|
730 |
-
) -> str:
|
731 |
-
"""
|
732 |
-
Decode a list of token IDs into a string.
|
733 |
-
Args:
|
734 |
-
token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
|
735 |
-
num_threads (Optional[int]): Number of threads to use for decoding.
|
736 |
-
Returns:
|
737 |
-
str: Decoded string.
|
738 |
-
"""
|
739 |
-
if isinstance(token_ids, torch.Tensor): # For PyTorch tensors
|
740 |
-
token_ids = token_ids.tolist()
|
741 |
-
elif isinstance(token_ids, np.ndarray): # For NumPy arrays
|
742 |
-
token_ids = token_ids.tolist()
|
743 |
-
|
744 |
-
|
745 |
-
output = self.tok.decode(input=token_ids, num_threads=num_threads)
|
746 |
-
if skip_special_tokens:
|
747 |
-
for substring in self.additional_special_tokens:
|
748 |
-
output = output.replace(substring, "")
|
749 |
-
|
750 |
-
if clean_up_tokenization_spaces:
|
751 |
-
warnings.warn(
|
752 |
-
"when cleaning up tokenization spaces, this will not behave "
|
753 |
-
"like the original `GPTXTokenizer`., Please supply "
|
754 |
-
"`clean_up_tokenization_spaces=False` for decoding."
|
755 |
-
)
|
756 |
-
output = self.clean_up_tokenization(output)
|
757 |
-
|
758 |
-
return output
|
759 |
-
|
760 |
-
|
761 |
-
def _convert_id_to_token(self, index: int) -> str:
|
762 |
-
"""
|
763 |
-
Convert a token ID to its corresponding token string.
|
764 |
-
Args:
|
765 |
-
index (int): Token ID.
|
766 |
-
Returns:
|
767 |
-
str: Corresponding token string.
|
768 |
-
"""
|
769 |
-
return self.tok.IdToPiece(index)
|
770 |
-
|
771 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
772 |
-
"""
|
773 |
-
Convert a list of tokens into a single string.
|
774 |
-
Args:
|
775 |
-
tokens (List[str]): List of token strings.
|
776 |
-
Returns:
|
777 |
-
str: Concatenated string of tokens.
|
778 |
-
"""
|
779 |
-
return self.tok.DecodePieces(tokens)
|
780 |
-
|
781 |
-
def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
|
782 |
-
"""
|
783 |
-
Internal method to decode token IDs with additional arguments.
|
784 |
-
Args:
|
785 |
-
token_ids (List[int]): List of token IDs.
|
786 |
-
**kwargs: Additional arguments to pass to the decode method.
|
787 |
-
Returns:
|
788 |
-
str: Decoded string.
|
789 |
-
This method also issues a warning if unsupported arguments are provided.
|
790 |
-
"""
|
791 |
-
passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
|
792 |
-
if len(passed_kwargs) != len(kwargs):
|
793 |
-
warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.")
|
794 |
-
text = self.decode(token_ids, **passed_kwargs)
|
795 |
-
return text
|
796 |
-
|
797 |
-
def save_tokenizer(self, save_dir: str) -> None:
|
798 |
-
if not os.path.isdir(save_dir):
|
799 |
-
print(f"Vocabulary path ({save_dir}) should be a directory")
|
800 |
-
return
|
801 |
-
out_vocab_file = os.path.join(save_dir, "tokenizer.model")
|
802 |
-
|
803 |
-
# if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
804 |
-
# copyfile(self.vocab_file, out_vocab_file)
|
805 |
-
# elif not os.path.isfile(self.vocab_file):
|
806 |
-
with open(out_vocab_file, "wb") as f:
|
807 |
-
content_spiece_model = self.tok.serialized_model_proto()
|
808 |
-
f.write(content_spiece_model)
|
809 |
-
|
810 |
-
return (out_vocab_file,)
|
811 |
-
|
812 |
-
def _decode(
|
813 |
-
self,
|
814 |
-
token_ids: List[int],
|
815 |
-
skip_special_tokens: bool = False,
|
816 |
-
clean_up_tokenization_spaces: bool = None,
|
817 |
-
spaces_between_special_tokens: bool = True,
|
818 |
-
**kwargs: Any,
|
819 |
-
) -> str:
|
820 |
-
text = self._tok_decode(
|
821 |
-
token_ids,
|
822 |
-
skip_special_tokens=skip_special_tokens,
|
823 |
-
spaces_between_special_tokens=spaces_between_special_tokens,
|
824 |
-
**kwargs,
|
825 |
-
)
|
826 |
-
|
827 |
-
clean_up_tokenization_spaces = (
|
828 |
-
clean_up_tokenization_spaces
|
829 |
-
if clean_up_tokenization_spaces is not None
|
830 |
-
else self.clean_up_tokenization_spaces
|
831 |
-
)
|
832 |
-
if clean_up_tokenization_spaces:
|
833 |
-
warnings.warn(
|
834 |
-
"when cleaning up tokenization spaces, this will not behave "
|
835 |
-
"like the original `GPTXTokenizer`., Please supply "
|
836 |
-
"`clean_up_tokenization_spaces=False` for decoding."
|
837 |
-
)
|
838 |
-
clean_text = self.clean_up_tokenization(text)
|
839 |
-
return clean_text
|
840 |
-
else:
|
841 |
-
return text
|
842 |
-
|
843 |
-
def save_vocabulary(
|
844 |
-
self,
|
845 |
-
save_directory: str,
|
846 |
-
filename_prefix: Optional[str] = None,
|
847 |
-
) -> Tuple[str]:
|
848 |
-
filename_prefix = filename_prefix + "-" if filename_prefix else ""
|
849 |
-
save_directory = Path(save_directory)
|
850 |
-
|
851 |
-
self._save_tokenizer_config(save_directory, filename_prefix)
|
852 |
-
tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix)
|
853 |
-
|
854 |
-
return (tokenizer_file_path,)
|
855 |
-
|
856 |
-
def _save_tokenizer_config(
|
857 |
-
self,
|
858 |
-
save_directory: Path,
|
859 |
-
filename_prefix: str,
|
860 |
-
) -> str:
|
861 |
-
self.save_tokenizer_config(save_directory)
|
862 |
-
old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE
|
863 |
-
assert old_tokenizer_config_path.is_file(), "tokenizer config path changed"
|
864 |
-
new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name)
|
865 |
-
old_tokenizer_config_path.replace(new_tokenizer_config_path)
|
866 |
-
return str(new_tokenizer_config_path)
|
867 |
-
|
868 |
-
def _find_tokenizer_files(self, save_directory: Path) -> List[Path]:
|
869 |
-
files = list(Path(save_directory).glob(self.model_file_glob))
|
870 |
-
return files
|
871 |
-
|
872 |
-
def _get_tokenizer_file(self, files: List[Path]):
|
873 |
-
assert files, "no saved tokenizer file found"
|
874 |
-
assert len(files) <= 1, "cannot handle multiple saved tokenizer files"
|
875 |
-
return files[0]
|
876 |
-
|
877 |
-
def _save_tokenizer(
|
878 |
-
self,
|
879 |
-
save_directory: Path,
|
880 |
-
filename_prefix: str,
|
881 |
-
) -> str:
|
882 |
-
self.save_tokenizer(str(save_directory))
|
883 |
-
tokenizer_files = self._find_tokenizer_files(save_directory)
|
884 |
-
old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files)
|
885 |
-
assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file"
|
886 |
-
new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"])
|
887 |
-
old_tokenizer_file_path.replace(new_tokenizer_file_path)
|
888 |
-
return str(new_tokenizer_file_path)
|
889 |
-
|
890 |
-
def save_tokenizer_config(self, save_dir: Path) -> None:
|
891 |
-
# convert Path to str
|
892 |
-
for k in self.tokenizer_config:
|
893 |
-
if isinstance(self.tokenizer_config[k], Path):
|
894 |
-
self.tokenizer_config[k] = str(self.tokenizer_config[k])
|
895 |
-
|
896 |
-
info_file = save_dir / "tokenizer_config.json"
|
897 |
-
with info_file.open("w") as f:
|
898 |
-
json.dump(self.tokenizer_config, f, indent=4)
|
899 |
-
|
900 |
-
def load_json(self, path: Path) -> dict:
|
901 |
-
with path.open("r") as f:
|
902 |
-
return json.load(f)
|
903 |
-
|
904 |
-
class SPTokenizer(HFGPTXTokenizer):
|
905 |
-
model_file_glob = "*tokenizer.model"
|
906 |
-
vocab_files_names = {"tokenizer_file": "tokenizer.model"}
|
907 |
-
decode_kwargs = ["num_threads"]
|
908 |
-
# `is_continuation` does not work without this, but it doesn't
|
909 |
-
# implement all APIs of `PreTrainedTokenizer`.
|
910 |
-
def encode(self, text: str, **kwargs) -> List[int]:
|
911 |
-
return_tokens = kwargs.pop('return_tokens', False)
|
912 |
-
is_continuation = kwargs.pop('is_continuation', False)
|
913 |
-
return self._encode(
|
914 |
-
text,
|
915 |
-
return_tokens=return_tokens,
|
916 |
-
is_continuation=is_continuation,
|
917 |
-
)
|
918 |
-
|
919 |
-
def __init__(self, *args, **kwargs):
|
920 |
-
super().__init__(*args, **kwargs)
|
921 |
-
|
922 |
-
self.eos_token = "</s>"
|
923 |
-
self.eos_token_id = 2
|
924 |
-
self.system_messages_by_lang = { # translations by deepl / google translate
|
925 |
-
"BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.", # noqa
|
926 |
-
"CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.", # noqa
|
927 |
-
"DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.", # noqa
|
928 |
-
"DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.", # noqa
|
929 |
-
"EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.", # noqa
|
930 |
-
"EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.", # noqa
|
931 |
-
"ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.", # noqa
|
932 |
-
"ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.", # noqa
|
933 |
-
"FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.", # noqa
|
934 |
-
"FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.", # noqa
|
935 |
-
"GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.", # noqa
|
936 |
-
"HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.", # noqa
|
937 |
-
"HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.", # noqa
|
938 |
-
"IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.", # noqa
|
939 |
-
"LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.", # noqa
|
940 |
-
"LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.", # noqa
|
941 |
-
"MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.", # noqa
|
942 |
-
"NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.", # noqa
|
943 |
-
"PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.", # noqa
|
944 |
-
"PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.", # noqa
|
945 |
-
"RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.", # noqa
|
946 |
-
"SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.", # noqa
|
947 |
-
"SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.", # noqa
|
948 |
-
"SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.", # noqa
|
949 |
-
}
|
950 |
-
chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n"
|
951 |
-
self.chat_template = {
|
952 |
-
lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
|
953 |
-
for lang, sys_msg in self.system_messages_by_lang.items()
|
954 |
-
}
|
955 |
-
|
956 |
-
output = self.tok.decode(input=token_ids, num_threads=num_threads)
|
957 |
-
if skip_special_tokens:
|
958 |
-
for substring in self.additional_special_tokens:
|
959 |
-
output = output.replace(substring, "")
|
960 |
-
|
961 |
-
if clean_up_tokenization_spaces:
|
962 |
-
warnings.warn(
|
963 |
-
"when cleaning up tokenization spaces, this will not behave "
|
964 |
-
"like the original `GPTXTokenizer`., Please supply "
|
965 |
-
"`clean_up_tokenization_spaces=False` for decoding."
|
966 |
-
)
|
967 |
-
output = self.clean_up_tokenization(output)
|
968 |
-
|
969 |
-
return output
|
970 |
-
|
971 |
-
|
972 |
-
def _convert_id_to_token(self, index: int) -> str:
|
973 |
-
"""
|
974 |
-
Convert a token ID to its corresponding token string.
|
975 |
-
Args:
|
976 |
-
index (int): Token ID.
|
977 |
-
Returns:
|
978 |
-
str: Corresponding token string.
|
979 |
-
"""
|
980 |
-
return self.tok.IdToPiece(index)
|
981 |
-
|
982 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
983 |
-
"""
|
984 |
-
Convert a list of tokens into a single string.
|
985 |
-
Args:
|
986 |
-
tokens (List[str]): List of token strings.
|
987 |
-
Returns:
|
988 |
-
str: Concatenated string of tokens.
|
989 |
-
"""
|
990 |
-
return self.tok.DecodePieces(tokens)
|
991 |
-
|
992 |
-
def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
|
993 |
-
"""
|
994 |
-
Internal method to decode token IDs with additional arguments.
|
995 |
-
Args:
|
996 |
-
token_ids (List[int]): List of token IDs.
|
997 |
-
**kwargs: Additional arguments to pass to the decode method.
|
998 |
-
Returns:
|
999 |
-
str: Decoded string.
|
1000 |
-
This method also issues a warning if unsupported arguments are provided.
|
1001 |
-
"""
|
1002 |
-
passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
|
1003 |
-
if len(passed_kwargs) != len(kwargs):
|
1004 |
-
warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.")
|
1005 |
-
text = self.decode(token_ids, **passed_kwargs)
|
1006 |
-
return text
|
1007 |
-
|
1008 |
-
def save_tokenizer(self, save_dir: str) -> None:
|
1009 |
-
if not os.path.isdir(save_dir):
|
1010 |
-
print(f"Vocabulary path ({save_dir}) should be a directory")
|
1011 |
-
return
|
1012 |
-
out_vocab_file = os.path.join(save_dir, "tokenizer.model")
|
1013 |
-
|
1014 |
-
# if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
1015 |
-
# copyfile(self.vocab_file, out_vocab_file)
|
1016 |
-
# elif not os.path.isfile(self.vocab_file):
|
1017 |
-
with open(out_vocab_file, "wb") as f:
|
1018 |
-
content_spiece_model = self.tok.serialized_model_proto()
|
1019 |
-
f.write(content_spiece_model)
|
1020 |
-
|
1021 |
-
return (out_vocab_file,)
|
1022 |
-
|
1023 |
-
def _decode(
|
1024 |
-
self,
|
1025 |
-
token_ids: List[int],
|
1026 |
-
skip_special_tokens: bool = False,
|
1027 |
-
clean_up_tokenization_spaces: bool = None,
|
1028 |
-
spaces_between_special_tokens: bool = True,
|
1029 |
-
**kwargs: Any,
|
1030 |
-
) -> str:
|
1031 |
-
text = self._tok_decode(
|
1032 |
-
token_ids,
|
1033 |
-
skip_special_tokens=skip_special_tokens,
|
1034 |
-
spaces_between_special_tokens=spaces_between_special_tokens,
|
1035 |
-
**kwargs,
|
1036 |
-
)
|
1037 |
-
|
1038 |
-
clean_up_tokenization_spaces = (
|
1039 |
-
clean_up_tokenization_spaces
|
1040 |
-
if clean_up_tokenization_spaces is not None
|
1041 |
-
else self.clean_up_tokenization_spaces
|
1042 |
-
)
|
1043 |
-
if clean_up_tokenization_spaces:
|
1044 |
-
warnings.warn(
|
1045 |
-
"when cleaning up tokenization spaces, this will not behave "
|
1046 |
-
"like the original `GPTXTokenizer`., Please supply "
|
1047 |
-
"`clean_up_tokenization_spaces=False` for decoding."
|
1048 |
-
)
|
1049 |
-
clean_text = self.clean_up_tokenization(text)
|
1050 |
-
return clean_text
|
1051 |
-
else:
|
1052 |
-
return text
|
1053 |
-
|
1054 |
-
def save_vocabulary(
|
1055 |
-
self,
|
1056 |
-
save_directory: str,
|
1057 |
-
filename_prefix: Optional[str] = None,
|
1058 |
-
) -> Tuple[str]:
|
1059 |
-
filename_prefix = filename_prefix + "-" if filename_prefix else ""
|
1060 |
-
save_directory = Path(save_directory)
|
1061 |
-
|
1062 |
-
self._save_tokenizer_config(save_directory, filename_prefix)
|
1063 |
-
tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix)
|
1064 |
-
|
1065 |
-
return (tokenizer_file_path,)
|
1066 |
-
|
1067 |
-
def _save_tokenizer_config(
|
1068 |
-
self,
|
1069 |
-
save_directory: Path,
|
1070 |
-
filename_prefix: str,
|
1071 |
-
) -> str:
|
1072 |
-
self.save_tokenizer_config(save_directory)
|
1073 |
-
old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE
|
1074 |
-
assert old_tokenizer_config_path.is_file(), "tokenizer config path changed"
|
1075 |
-
new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name)
|
1076 |
-
old_tokenizer_config_path.replace(new_tokenizer_config_path)
|
1077 |
-
return str(new_tokenizer_config_path)
|
1078 |
-
|
1079 |
-
def _find_tokenizer_files(self, save_directory: Path) -> List[Path]:
|
1080 |
-
files = list(Path(save_directory).glob(self.model_file_glob))
|
1081 |
-
return files
|
1082 |
-
|
1083 |
-
def _get_tokenizer_file(self, files: List[Path]):
|
1084 |
-
assert files, "no saved tokenizer file found"
|
1085 |
-
assert len(files) <= 1, "cannot handle multiple saved tokenizer files"
|
1086 |
-
return files[0]
|
1087 |
-
|
1088 |
-
def _save_tokenizer(
|
1089 |
-
self,
|
1090 |
-
save_directory: Path,
|
1091 |
-
filename_prefix: str,
|
1092 |
-
) -> str:
|
1093 |
-
self.save_tokenizer(str(save_directory))
|
1094 |
-
tokenizer_files = self._find_tokenizer_files(save_directory)
|
1095 |
-
old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files)
|
1096 |
-
assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file"
|
1097 |
-
new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"])
|
1098 |
-
old_tokenizer_file_path.replace(new_tokenizer_file_path)
|
1099 |
-
return str(new_tokenizer_file_path)
|
1100 |
-
|
1101 |
-
def save_tokenizer_config(self, save_dir: Path) -> None:
|
1102 |
-
# convert Path to str
|
1103 |
-
for k in self.tokenizer_config:
|
1104 |
-
if isinstance(self.tokenizer_config[k], Path):
|
1105 |
-
self.tokenizer_config[k] = str(self.tokenizer_config[k])
|
1106 |
-
|
1107 |
-
info_file = save_dir / "tokenizer_config.json"
|
1108 |
-
with info_file.open("w") as f:
|
1109 |
-
json.dump(self.tokenizer_config, f, indent=4)
|
1110 |
-
|
1111 |
-
def load_json(self, path: Path) -> dict:
|
1112 |
-
with path.open("r") as f:
|
1113 |
-
return json.load(f)
|
1114 |
-
|
1115 |
-
class SPTokenizer(HFGPTXTokenizer):
|
1116 |
-
model_file_glob = "*tokenizer.model"
|
1117 |
-
vocab_files_names = {"tokenizer_file": "tokenizer.model"}
|
1118 |
-
decode_kwargs = ["num_threads"]
|
1119 |
-
# `is_continuation` does not work without this, but it doesn't
|
1120 |
-
# implement all APIs of `PreTrainedTokenizer`.
|
1121 |
-
def encode(self, text: str, **kwargs) -> List[int]:
|
1122 |
-
return_tokens = kwargs.pop('return_tokens', False)
|
1123 |
-
is_continuation = kwargs.pop('is_continuation', False)
|
1124 |
-
return self._encode(
|
1125 |
-
text,
|
1126 |
-
return_tokens=return_tokens,
|
1127 |
-
is_continuation=is_continuation,
|
1128 |
-
)
|
1129 |
-
|
1130 |
-
def __init__(self, *args, **kwargs):
|
1131 |
-
super().__init__(*args, **kwargs)
|
1132 |
-
|
1133 |
-
self.eos_token = "</s>"
|
1134 |
-
self.eos_token_id = 2
|
1135 |
-
self.system_messages_by_lang = { # translations by deepl / google translate
|
1136 |
-
"BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.", # noqa
|
1137 |
-
"CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.", # noqa
|
1138 |
-
"DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.", # noqa
|
1139 |
-
"DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.", # noqa
|
1140 |
-
"EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.", # noqa
|
1141 |
-
"EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.", # noqa
|
1142 |
-
"ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.", # noqa
|
1143 |
-
"ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.", # noqa
|
1144 |
-
"FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.", # noqa
|
1145 |
-
"FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.", # noqa
|
1146 |
-
"GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.", # noqa
|
1147 |
-
"HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.", # noqa
|
1148 |
-
"HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.", # noqa
|
1149 |
-
"IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.", # noqa
|
1150 |
-
"LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.", # noqa
|
1151 |
-
"LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.", # noqa
|
1152 |
-
"MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.", # noqa
|
1153 |
-
"NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.", # noqa
|
1154 |
-
"PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.", # noqa
|
1155 |
-
"PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.", # noqa
|
1156 |
-
"RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.", # noqa
|
1157 |
-
"SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.", # noqa
|
1158 |
-
"SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.", # noqa
|
1159 |
-
"SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.", # noqa
|
1160 |
-
}
|
1161 |
-
chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n"
|
1162 |
-
self.chat_template = {
|
1163 |
-
lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
|
1164 |
-
for lang, sys_msg in self.system_messages_by_lang.items()
|
1165 |
-
}
|
1166 |
output = self.tok.decode(input=token_ids, num_threads=num_threads)
|
1167 |
if skip_special_tokens:
|
1168 |
for substring in self.additional_special_tokens:
|
|
|
9 |
import sentencepiece as spm
|
10 |
import numpy as np
|
11 |
import torch
|
|
|
12 |
from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
|
13 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
14 |
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
|
|
|
245 |
Returns:
|
246 |
str: Decoded string.
|
247 |
"""
|
248 |
+
if isinstance(token_ids, torch.Tensor): # For PyTorch tensors
|
249 |
+
token_ids = token_ids.tolist()
|
250 |
+
elif isinstance(token_ids, np.ndarray): # For NumPy arrays
|
251 |
+
token_ids = token_ids.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
output = self.tok.decode(input=token_ids, num_threads=num_threads)
|
254 |
if skip_special_tokens:
|
255 |
for substring in self.additional_special_tokens:
|