--- license: apache-2.0 tags: - Bounding box detection - PyTorch --- This repository contains code that you can use to train or load [Faster R-CNN](https://arxiv.org/pdf/1504.08083.pdf) models in half mode easily. Below is an example of how to load pretrained weights in half mode. ``` import numpy as np from PIL import Image from frcnn.visualizing_image import SingleImageViz from frcnn.processing_image import Preprocess from frcnn.modeling_frcnn import GeneralizedRCNN from frcnn.utils import Config max_detections = 36 frcnn_config = json.load(open("frcnn/config.jsonl")) frcnn_config = Config(frcnn_config) image_preprocessor= Preprocess(frcnn_config).half().cuda() box_segmentation_model= GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", frcnn_config).half().cuda() img_url = 'image.png' raw_image = Image.open(img_url).convert('RGB') frcnn_output = decode_image(np.asarray(raw_image), box_segmentation_model, image_preprocessor, max_detections=max_detections) ```