--- library_name: transformers.js pipeline_tag: object-detection license: agpl-3.0 --- ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform object-detection. ```js import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; // Load model const model = await AutoModel.from_pretrained('onnx-community/yolov10s', { // quantized: false, // (Optional) Use unquantized version. }) // Load processor const processor = await AutoProcessor.from_pretrained('onnx-community/yolov10s'); // Read image and run processor const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; const image = await RawImage.read(url); const { pixel_values } = await processor(image); // Run object detection const { output0 } = await model({ images: pixel_values }); const predictions = output0.tolist()[0]; const threshold = 0.5; for (const [xmin, ymin, xmax, ymax, score, id] of predictions) { if (score < threshold) continue; const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ') console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`) } // Found "car" at [448.81, 378.16, 639.25, 477.85] with score 0.95. // Found "car" at [177.93, 338.54, 398.13, 417.66] with score 0.93. // Found "bicycle" at [449.25, 475.36, 555.90, 537.42] with score 0.92. // Found "bicycle" at [1.46, 517.67, 109.81, 584.15] with score 0.90. // Found "bicycle" at [351.74, 524.63, 464.50, 588.63] with score 0.87. // Found "person" at [550.09, 260.31, 591.83, 332.18] with score 0.85. // Found "person" at [474.90, 429.96, 533.88, 535.70] with score 0.83. // Found "traffic light" at [208.08, 55.58, 233.91, 102.01] with score 0.78. // ... ```