--- library_name: transformers.js base_model: alibaba-damo/mgp-str-base pipeline_tag: image-to-text tags: - ocr --- https://huggingface.co/alibaba-damo/mgp-str-base with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Optical Character Recognition (OCR) w/ `onnx-community/mgp-str-base` ```js import { MgpstrForSceneTextRecognition, MgpstrProcessor, load_image } from '@huggingface/transformers'; const model_id = 'onnx-community/mgp-str-base'; const model = await MgpstrForSceneTextRecognition.from_pretrained(model_id); const processor = await MgpstrProcessor.from_pretrained(model_id); // Load image from a URL const url = "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ocr-demo.png"; const image = await load_image(url); // Preprocess the image const result = await processor(image); // Perform inference const outputs = await model(result); // Decode the model outputs const generated_text = processor.batch_decode(outputs.logits).generated_text; console.log(generated_text); // [ 'ticket' ] ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).