--- library_name: transformers license: apache-2.0 language: - mn --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Sainbayar B. (Б. Сайнбаяр) https://www.instagram.com/only_sainaa/] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [Mongolian Cyrillic to Traditional Mongolian Script conversion (Монгол кириллээс монгол бичиг рүү хөрвүүлэгч загвар)] - **Language(s) (NLP):** [Mongolian /Монгол/] - **License:** [More Information Needed] - **Finetuned from model [google-t5-small]:** [More Information Needed] ```python #Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("onlysainaa/cyrillic_to_script-t5-model") model = AutoModelForSeq2SeqLM.from_pretrained("onlysainaa/cyrillic_to_script-t5-model") #Check if CUDA (GPU) is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #Move the model to the same device (GPU or CPU) model.to(device) #Prepare text input input_text = "сайн уу" #Mongolian greeting #Tokenize the input text inputs = tokenizer(input_text, return_tensors="pt") #Move the input tensors to the same device as the model inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']} #Generate translation outputs = model.generate(**inputs) #Decode the output to human-readable text translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) #Print the translated text print(f"Translated Text: {translated_text}") ```