--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya3_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8495434696308058 --- # Boya3_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5872 - Accuracy: 0.8495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3849 | 1.0 | 632 | 0.3967 | 0.8273 | | 0.3194 | 2.0 | 1264 | 0.4043 | 0.8372 | | 0.2199 | 3.0 | 1896 | 0.4423 | 0.8503 | | 0.1532 | 4.0 | 2528 | 0.6718 | 0.8444 | | 0.0267 | 5.0 | 3160 | 0.9647 | 0.8416 | | 0.0853 | 6.0 | 3792 | 1.2277 | 0.8428 | | 0.0213 | 7.0 | 4424 | 1.4343 | 0.8491 | | 0.0008 | 8.0 | 5056 | 1.4458 | 0.8495 | | 0.0035 | 9.0 | 5688 | 1.5300 | 0.8495 | | 0.0003 | 10.0 | 6320 | 1.5872 | 0.8495 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2