--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya3_3Class_Adamax_1e4_20Epoch_Beit-large-224_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8403960396039604 --- # Boya3_3Class_Adamax_1e4_20Epoch_Beit-large-224_fold4 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5511 - Accuracy: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4103 | 1.0 | 632 | 0.4783 | 0.8048 | | 0.2793 | 2.0 | 1264 | 0.4295 | 0.8222 | | 0.2258 | 3.0 | 1896 | 0.4738 | 0.8238 | | 0.063 | 4.0 | 2528 | 0.8564 | 0.84 | | 0.0134 | 5.0 | 3160 | 1.0907 | 0.8388 | | 0.0185 | 6.0 | 3792 | 1.3763 | 0.8396 | | 0.0092 | 7.0 | 4424 | 1.4472 | 0.8380 | | 0.0 | 8.0 | 5056 | 1.5323 | 0.8372 | | 0.0 | 9.0 | 5688 | 1.5340 | 0.8404 | | 0.0 | 10.0 | 6320 | 1.5511 | 0.8404 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2