onizukal commited on
Commit
48c2c01
1 Parent(s): 9788260

End of training

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swin-large-patch4-window7-224-in22k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.4703308722996992
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3
32
+
33
+ This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.7253
36
+ - Accuracy: 0.4703
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.001
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
68
+ | 2.4987 | 1.0 | 913 | 2.4779 | 0.2773 |
69
+ | 2.2499 | 2.0 | 1826 | 2.3076 | 0.2986 |
70
+ | 2.1231 | 3.0 | 2739 | 2.2022 | 0.3325 |
71
+ | 2.1706 | 4.0 | 3652 | 2.1236 | 0.3672 |
72
+ | 2.0969 | 5.0 | 4565 | 2.0581 | 0.3940 |
73
+ | 1.9524 | 6.0 | 5478 | 2.0029 | 0.4085 |
74
+ | 1.9868 | 7.0 | 6391 | 1.9548 | 0.4208 |
75
+ | 1.9729 | 8.0 | 7304 | 1.9129 | 0.4293 |
76
+ | 1.9817 | 9.0 | 8217 | 1.8827 | 0.4331 |
77
+ | 1.9117 | 10.0 | 9130 | 1.8505 | 0.4430 |
78
+ | 1.8805 | 11.0 | 10043 | 1.8244 | 0.4482 |
79
+ | 1.8198 | 12.0 | 10956 | 1.8053 | 0.4528 |
80
+ | 1.7002 | 13.0 | 11869 | 1.7829 | 0.4558 |
81
+ | 1.811 | 14.0 | 12782 | 1.7721 | 0.4602 |
82
+ | 1.8637 | 15.0 | 13695 | 1.7553 | 0.4602 |
83
+ | 1.8566 | 16.0 | 14608 | 1.7454 | 0.4654 |
84
+ | 1.742 | 17.0 | 15521 | 1.7350 | 0.4665 |
85
+ | 1.692 | 18.0 | 16434 | 1.7303 | 0.4695 |
86
+ | 1.8241 | 19.0 | 17347 | 1.7261 | 0.4695 |
87
+ | 1.8203 | 20.0 | 18260 | 1.7253 | 0.4703 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.32.1
93
+ - Pytorch 2.1.1+cu121
94
+ - Datasets 2.21.0
95
+ - Tokenizers 0.13.2