--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8025751072961373 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5178 - Accuracy: 0.8026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4933 | 1.15 | 150 | 0.5452 | 0.7124 | | 0.4157 | 2.29 | 300 | 0.4775 | 0.7854 | | 0.415 | 3.44 | 450 | 0.4764 | 0.7704 | | 0.3509 | 4.58 | 600 | 0.4882 | 0.7961 | | 0.2829 | 5.73 | 750 | 0.4654 | 0.7768 | | 0.2706 | 6.87 | 900 | 0.4954 | 0.7961 | | 0.2507 | 8.02 | 1050 | 0.4421 | 0.8283 | | 0.2115 | 9.16 | 1200 | 0.4161 | 0.8305 | | 0.1666 | 10.31 | 1350 | 0.5859 | 0.7811 | | 0.1515 | 11.45 | 1500 | 0.4683 | 0.8283 | | 0.1315 | 12.6 | 1650 | 0.5178 | 0.8026 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0