---
language:
- en
- ko
license: cc-by-nc-4.0
datasets:
- kyujinpy/KOR-gugugu-platypus-set
base_model:
- yanolja/KoSOLAR-10.7B-v0.2
pipeline_tag: text-generation
---
# KoSOLAR-v0.2-gugutypus-10.7B
---
## Model Details
**Model Developers**
- DongGeon Lee ([oneonlee](https://huggingface.co/oneonlee))
**Model Architecture**
- **KoSOLAR-v0.2-gugutypus-10.7B** is a instruction fine-tuned auto-regressive language model, based on the [SOLAR](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) transformer architecture.
**Base Model**
- [yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2)
**Training Dataset**
- [kyujinpy/KOR-gugugu-platypus-set](https://huggingface.co/datasets/kyujinpy/KOR-gugugu-platypus-set)
**Environments**
- Google Colab (Pro)
- GPU : NVIDIA A100 40GB
---
## Model comparisons
- **Ko-LLM leaderboard (YYYY/MM/DD)** [[link]](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --------------------- | ------- | ------ | ------------ | ------- | ------------- | --------------- |
| **KoSOLAR-gugutypus** | NaN | NaN | NaN | NaN | NaN | NaN |
- **(ENG) AI-Harness evaluation** [[link]](https://github.com/EleutherAI/lm-evaluation-harness)
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|HellaSwag | 1|none | 0|acc |0.6075|± |0.0049|
|HellaSwag | 1|none | 5|acc | |± | |
|BoolQ | 2|none | 0|acc |0.8737|± |0.0058|
|BoolQ | 2|none | 5|acc | |± | |
|COPA | 1|none | 0|acc |0.8300|± |0.0378|
|COPA | 1|none | 5|acc | |± | |
|truthfulqa |N/A |none | 0|acc |0.4249|± |0.0023|
|truthfulqa |N/A |none | 5|acc | |± | |
|MMLU |N/A |none | 0|acc |0.5826|± |0.1432|
|MMLU |N/A |none | 5|acc | |± | |
- **(KOR) AI-Harness evaluation** [[link]](https://github.com/Beomi/ko-lm-evaluation-harness)
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|-------------------------|-------|------|-----:|------|-----:|---|-----:|
|KMMLU |N/A |none | 0|acc |0.3335|± |0.0475|
|KMMLU |N/A |none | 5|acc | |± | |
|KoBEST-HellaSwag | 0|none | 0|acc |0.4360|± |0.0222|
|KoBEST-HellaSwag | 0|none | 5|acc |0.4420|± |0.0222|
|KoBEST-BoolQ | 0|none | 0|acc |0.5064|± |0.0133|
|KoBEST-BoolQ | 0|none | 5|acc |0.8583|± |0.0093|
|KoBEST-COPA | 0|none | 0|acc |0.6040|± |0.0155|
|KoBEST-COPA | 0|none | 5|acc |0.7610|± |0.0135|
|KoBEST-SentiNeg | 0|none | 0|acc |0.5844|± |0.0248|
|KoBEST-SentiNeg | 0|none | 5|acc |0.9471|± |0.0112|
|KoBEST-MMLU | 0|none | 0|acc | |± | |
|KoBEST-MMLU | 0|none | 5|acc | |± | |
---
## Implementation Code
```python
### KoSOLAR-gugutypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "oneonlee/KoSOLAR-v0.2-gugutypus-10.7B"
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)
```