--- language: - en - ko license: cc-by-nc-4.0 datasets: - kyujinpy/KOR-gugugu-platypus-set base_model: - yanolja/KoSOLAR-10.7B-v0.2 pipeline_tag: text-generation --- # KoSOLAR-v0.2-gugutypus-10.7B --- ## Model Details **Model Developers** - DongGeon Lee ([oneonlee](https://huggingface.co/oneonlee)) **Model Architecture** - **KoSOLAR-v0.2-gugutypus-10.7B** is a instruction fine-tuned auto-regressive language model, based on the [SOLAR](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) transformer architecture. **Base Model** - [yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2) **Training Dataset** - [kyujinpy/KOR-gugugu-platypus-set](https://huggingface.co/datasets/kyujinpy/KOR-gugugu-platypus-set) **Environments** - Google Colab (Pro) - GPU : NVIDIA A100 40GB --- ## Model comparisons - **Ko-LLM leaderboard (YYYY/MM/DD)** [[link]](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard) | Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --------------------- | ------- | ------ | ------------ | ------- | ------------- | --------------- | | **KoSOLAR-gugutypus** | NaN | NaN | NaN | NaN | NaN | NaN |
- **(ENG) AI-Harness evaluation** [[link]](https://github.com/EleutherAI/lm-evaluation-harness) | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |HellaSwag | 1|none | 0|acc |0.6075|± |0.0049| |HellaSwag | 1|none | 5|acc | |± | | |BoolQ | 2|none | 0|acc |0.8737|± |0.0058| |BoolQ | 2|none | 5|acc | |± | | |COPA | 1|none | 0|acc |0.8300|± |0.0378| |COPA | 1|none | 5|acc | |± | | |truthfulqa |N/A |none | 0|acc |0.4249|± |0.0023| |truthfulqa |N/A |none | 5|acc | |± | | |MMLU |N/A |none | 0|acc |0.5826|± |0.1432| |MMLU |N/A |none | 5|acc | |± | | - **(KOR) AI-Harness evaluation** [[link]](https://github.com/Beomi/ko-lm-evaluation-harness) | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |-------------------------|-------|------|-----:|------|-----:|---|-----:| |KMMLU |N/A |none | 0|acc |0.3335|± |0.0475| |KMMLU |N/A |none | 5|acc | |± | | |KoBEST-HellaSwag | 0|none | 0|acc |0.4360|± |0.0222| |KoBEST-HellaSwag | 0|none | 5|acc |0.4420|± |0.0222| |KoBEST-BoolQ | 0|none | 0|acc |0.5064|± |0.0133| |KoBEST-BoolQ | 0|none | 5|acc |0.8583|± |0.0093| |KoBEST-COPA | 0|none | 0|acc |0.6040|± |0.0155| |KoBEST-COPA | 0|none | 5|acc |0.7610|± |0.0135| |KoBEST-SentiNeg | 0|none | 0|acc |0.5844|± |0.0248| |KoBEST-SentiNeg | 0|none | 5|acc |0.9471|± |0.0112| |KoBEST-MMLU | 0|none | 0|acc | |± | | |KoBEST-MMLU | 0|none | 5|acc | |± | | --- ## Implementation Code ```python ### KoSOLAR-gugutypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "oneonlee/KoSOLAR-v0.2-gugutypus-10.7B" model = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(repo) ```