--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 datasets: - omymble/setfit-books-categories library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: His fantasy works are not cliché or based on traditional fantasy but they are full of fresh, imagination and worlds and characters we can learn to love - text: I found this a good book from a good author - text: This is dark fantasy at its best - text: Mister Monday is an interesting Fantasy novel that draws readers in from the very beginning - text: I found this a good book from a good author inference: false --- # SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [omymble/setfit-books-categories](https://huggingface.co/datasets/omymble/setfit-books-categories) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect) - **SetFitABSA Polarity Model:** [omymble/books-categories](https://huggingface.co/omymble/books-categories) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes - **Training Dataset:** [omymble/setfit-books-categories](https://huggingface.co/datasets/omymble/setfit-books-categories) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | BOOK#AUDIENCE | | | BOOK#AUTHOR | | | BOOK#GENERAL | | | BOOK#TITLE | | | CONTENT#CHARACTERS | | | CONTENT#GENRE | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "setfit-absa-aspect", "omymble/books-categories", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 21.0917 | 78 | | Label | Training Sample Count | |:-------------------|:----------------------| | BOOK#AUDIENCE | 20 | | BOOK#AUTHOR | 20 | | BOOK#GENERAL | 20 | | BOOK#TITLE | 20 | | CONTENT#CHARACTERS | 20 | | CONTENT#GENRE | 20 | ### Training Hyperparameters - batch_size: (128, 128) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:-------:|:-------------:|:---------------:| | 0.0106 | 1 | 0.2623 | - | | 0.5319 | 50 | 0.1293 | - | | 1.0638 | 100 | 0.0132 | - | | 1.5957 | 150 | 0.0022 | - | | 2.1277 | 200 | 0.0027 | - | | 2.6596 | 250 | 0.0013 | - | | **3.1915** | **300** | **0.0017** | **-** | | 3.7234 | 350 | 0.0015 | - | | 4.2553 | 400 | 0.0029 | - | | 4.7872 | 450 | 0.0015 | - | | 0.0106 | 1 | 0.0115 | - | | 0.5319 | 50 | 0.009 | 0.1324 | | 1.0638 | 100 | 0.0094 | 0.1267 | | 1.5957 | 150 | 0.0007 | 0.1194 | | 2.1277 | 200 | 0.0017 | 0.1256 | | 2.6596 | 250 | 0.0008 | 0.1293 | | **3.1915** | **300** | **0.0007** | **0.1173** | | 3.7234 | 350 | 0.0008 | 0.1231 | | 4.2553 | 400 | 0.0023 | 0.1272 | | 4.7872 | 450 | 0.0008 | 0.1241 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.1.0 - spaCy: 3.7.4 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```