diff --git "a/unsloth_compiled_cache/UnslothKTOTrainer.py" "b/unsloth_compiled_cache/UnslothKTOTrainer.py" new file mode 100644--- /dev/null +++ "b/unsloth_compiled_cache/UnslothKTOTrainer.py" @@ -0,0 +1,2057 @@ +""" +2025.8.8 +2025.8.9 +4.55.2 +0.21.0 +__UNSLOTH_VERSIONING__ +""" +from torch import Tensor +import torch +import torch.nn as nn +from torch.nn import functional as F +from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable +from trl.trainer.kto_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalLoopOutput, F, FeatureExtractionMixin, KTOConfig, KTOTrainer, Literal, Optional, PartialState, Path, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SequentialSampler, Trainer, TrainerCallback, TrainingArguments, Union, _get_kl_dataset, _process_tokens, _tokenize, autocast, concatenate_datasets, contextmanager, create_reference_model, defaultdict, disable_dropout_in_model, generate_model_card, get_comet_experiment_url, has_length, inspect, is_comet_available, is_liger_kernel_available, is_peft_available, is_wandb_available, itemgetter, log_table_to_comet_experiment, maybe_apply_chat_template, maybe_extract_prompt, maybe_unpair_preference_dataset, nn, np, nullcontext, os, pad_to_length, pd, peft_module_casting_to_bf16, prepare_deepspeed, prepare_model_for_kbit_training, random, selective_log_softmax, textwrap, torch, tqdm, wandb, warnings, F, Optional, PeftModel, PreTrainedModel, Trainer, is_peft_available, os, torch) + + +import os +from typing import * +from dataclasses import dataclass, field +from packaging.version import Version +import torch +import numpy as np +from contextlib import nullcontext +from torch.nn import functional as F +from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling + +torch_compile_options = { + "epilogue_fusion" : True, + "max_autotune" : False, + "shape_padding" : True, + "trace.enabled" : False, + "triton.cudagraphs" : False, +} + +@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) +def chunked_selective_log_softmax(logits, index): + # Split into 4 chunks only + chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) + chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) + all_per_token_logps = [] + # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index) + for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): + chunk_logits = chunk_logits.to(torch.float32) + selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) + logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) + per_token_logps = selected_logits - logsumexp_values + all_per_token_logps.append(per_token_logps) + pass + all_per_token_logps = torch.concat(all_per_token_logps) + all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) + return all_per_token_logps +@dataclass +class UnslothKTOConfig(KTOConfig): + """ + + Configuration class for the [`KTOTrainer`]. + + This class includes only the parameters that are specific to KTO training. For a full list of training arguments, + please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may + differ from those in [`~transformers.TrainingArguments`]. + + Using [`~transformers.HfArgumentParser`] we can turn this class into + [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the + command line. + + Parameters: + max_length (`int` or `None`, *optional*, defaults to `1024`): + Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want + to use the default data collator. + max_prompt_length (`int` or `None`, *optional*, defaults to `512`): + Maximum length of the prompt. This argument is required if you want to use the default data collator. + max_completion_length (`int` or `None`, *optional*, defaults to `None`): + Maximum length of the completion. This argument is required if you want to use the default data collator + and your model is an encoder-decoder. + beta (`float`, *optional*, defaults to `0.1`): + Parameter controlling the deviation from the reference model. Higher β means less deviation from the + reference model. + loss_type (`str`, *optional*, defaults to `"kto"`): + Type of loss to use. Possible values are: + + - `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper. + - `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the + [APO](https://huggingface.co/papers/2408.06266) paper. + + desirable_weight (`float`, *optional*, defaults to `1.0`): + Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris. + undesirable_weight (`float`, *optional*, defaults to `1.0`): + Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs. + label_pad_token_id (`int`, *optional*, defaults to `-100`): + Label pad token id. This argument is required if you want to use the default data collator. + padding_value (`int` or `None`, *optional*, defaults to `None`): + Padding value to use. If `None`, the padding value of the tokenizer is used. + truncation_mode (`str`, *optional*, defaults to `"keep_end"`): + Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. + This argument is required if you want to use the default data collator. + generate_during_eval (`bool`, *optional*, defaults to `False`): + If `True`, generates and logs completions from both the model and the reference model to W&B or Comet + during evaluation. + is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): + When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, + you need to specify if the model returned by the callable is an encoder-decoder model. + precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): + Whether to precompute reference model log probabilities for training and evaluation datasets. This is + useful when training without the reference model to reduce the total GPU memory needed. + model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): + Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a + string. + ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): + Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model + from a string. + dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`): + Number of processes to use for processing the dataset. + disable_dropout (`bool`, *optional*, defaults to `True`): + Whether to disable dropout in the model and reference model. + use_liger_loss (`bool`, *optional*, defaults to `False`): + Whether to use Liger loss. It requires liger-kernel to be installed. + base_model_attribute_name (`str`, *optional*, defaults to `"model"`): + Name of the attribute in the model that contains the base model. This is used to get the base model from + the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`. + + """ + vllm_sampling_params: Optional[Any] = field( + default = None, + metadata = {'help': 'vLLM SamplingParams'}, + ) + unsloth_num_chunks : Optional[int] = field( + default = -1, + metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, + ) + max_seq_length : Optional[int] = field( + default = None, + metadata = {'help': 'Maximum sequence length to truncate to.'}, + ) + def __init__( + self, + output_dir = None, + overwrite_output_dir = None, + do_train = False, + do_eval = False, + do_predict = False, + eval_strategy = 'no', + prediction_loss_only = False, + per_device_train_batch_size = 4, + per_device_eval_batch_size = 4, + per_gpu_train_batch_size = None, + per_gpu_eval_batch_size = None, + gradient_accumulation_steps = 2, + eval_accumulation_steps = 2, + eval_delay = 0, + torch_empty_cache_steps = 250, + learning_rate = 5e-05, + weight_decay = 0.01, + adam_beta1 = 0.9, + adam_beta2 = 0.999, + adam_epsilon = 1e-08, + max_grad_norm = 1.0, + num_train_epochs = 3.0, + max_steps = -1, + lr_scheduler_type = 'linear', + warmup_ratio = 0.1, + warmup_steps = 0, + log_level = 'passive', + log_level_replica = 'warning', + log_on_each_node = True, + logging_dir = None, + logging_strategy = 'steps', + logging_first_step = False, + logging_steps = 1, + logging_nan_inf_filter = False, + save_strategy = 'steps', + save_steps = 500, + save_total_limit = None, + save_safetensors = True, + save_on_each_node = False, + save_only_model = False, + restore_callback_states_from_checkpoint = False, + no_cuda = False, + use_cpu = False, + use_mps_device = False, + seed = 3407, + data_seed = 3407, + jit_mode_eval = False, + use_ipex = False, + bf16 = False, + fp16 = False, + fp16_opt_level = 'O1', + half_precision_backend = 'auto', + bf16_full_eval = False, + fp16_full_eval = False, + tf32 = None, + local_rank = -1, + ddp_backend = None, + tpu_num_cores = None, + tpu_metrics_debug = False, + debug = '', + dataloader_drop_last = False, + eval_steps = None, + dataloader_num_workers = 0, + dataloader_prefetch_factor = None, + past_index = -1, + run_name = None, + disable_tqdm = None, + remove_unused_columns = True, + label_names = None, + load_best_model_at_end = False, + metric_for_best_model = None, + greater_is_better = None, + ignore_data_skip = False, + fsdp = '', + fsdp_min_num_params = 0, + fsdp_config = None, + fsdp_transformer_layer_cls_to_wrap = None, + accelerator_config = None, + deepspeed = None, + label_smoothing_factor = 0.0, + optim = 'adamw_8bit', + optim_args = None, + adafactor = False, + group_by_length = False, + length_column_name = 'length', + report_to = None, + ddp_find_unused_parameters = None, + ddp_bucket_cap_mb = None, + ddp_broadcast_buffers = None, + dataloader_pin_memory = True, + dataloader_persistent_workers = False, + skip_memory_metrics = True, + use_legacy_prediction_loop = False, + push_to_hub = False, + resume_from_checkpoint = None, + hub_model_id = None, + hub_strategy = 'every_save', + hub_token = None, + hub_private_repo = None, + hub_always_push = False, + hub_revision = None, + gradient_checkpointing = False, + gradient_checkpointing_kwargs = None, + include_inputs_for_metrics = False, + eval_do_concat_batches = True, + fp16_backend = 'auto', + push_to_hub_model_id = None, + push_to_hub_organization = None, + push_to_hub_token = None, + mp_parameters = '', + auto_find_batch_size = True, + full_determinism = False, + torchdynamo = None, + ray_scope = 'last', + ddp_timeout = 1800, + torch_compile = False, + torch_compile_backend = None, + torch_compile_mode = None, + include_tokens_per_second = False, + include_num_input_tokens_seen = False, + neftune_noise_alpha = None, + optim_target_modules = None, + batch_eval_metrics = False, + eval_on_start = False, + use_liger_kernel = False, + liger_kernel_config = None, + eval_use_gather_object = False, + average_tokens_across_devices = True, + max_length = 1024, + max_prompt_length = 512, + max_completion_length = None, + beta = 0.1, + loss_type = 'kto', + desirable_weight = 1.0, + undesirable_weight = 1.0, + label_pad_token_id = -100, + padding_value = None, + truncation_mode = 'keep_end', + generate_during_eval = False, + is_encoder_decoder = None, + disable_dropout = True, + precompute_ref_log_probs = False, + model_init_kwargs = None, + ref_model_init_kwargs = None, + dataset_num_proc = None, + use_liger_loss = False, + base_model_attribute_name = 'model', + vllm_sampling_params = None, + unsloth_num_chunks = -1, + max_seq_length = None, + **kwargs, + ): + if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') + if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') + if output_dir is None and save_strategy == 'steps' and save_steps == 500: + output_dir = 'unsloth_training_checkpoints' + save_strategy = 'no' + if dataset_num_proc is None: + from multiprocessing import cpu_count + dataset_num_proc = min(cpu_count()*2, 2) + + super().__init__( + output_dir = output_dir, + overwrite_output_dir = overwrite_output_dir, + do_train = do_train, + do_eval = do_eval, + do_predict = do_predict, + eval_strategy = eval_strategy, + prediction_loss_only = prediction_loss_only, + per_device_train_batch_size = per_device_train_batch_size, + per_device_eval_batch_size = per_device_eval_batch_size, + per_gpu_train_batch_size = per_gpu_train_batch_size, + per_gpu_eval_batch_size = per_gpu_eval_batch_size, + gradient_accumulation_steps = gradient_accumulation_steps, + eval_accumulation_steps = eval_accumulation_steps, + eval_delay = eval_delay, + torch_empty_cache_steps = torch_empty_cache_steps, + learning_rate = learning_rate, + weight_decay = weight_decay, + adam_beta1 = adam_beta1, + adam_beta2 = adam_beta2, + adam_epsilon = adam_epsilon, + max_grad_norm = max_grad_norm, + num_train_epochs = num_train_epochs, + max_steps = max_steps, + lr_scheduler_type = lr_scheduler_type, + warmup_ratio = warmup_ratio, + warmup_steps = warmup_steps, + log_level = log_level, + log_level_replica = log_level_replica, + log_on_each_node = log_on_each_node, + logging_dir = logging_dir, + logging_strategy = logging_strategy, + logging_first_step = logging_first_step, + logging_steps = logging_steps, + logging_nan_inf_filter = logging_nan_inf_filter, + save_strategy = save_strategy, + save_steps = save_steps, + save_total_limit = save_total_limit, + save_safetensors = save_safetensors, + save_on_each_node = save_on_each_node, + save_only_model = save_only_model, + restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, + no_cuda = no_cuda, + use_cpu = use_cpu, + use_mps_device = use_mps_device, + seed = seed, + data_seed = data_seed, + jit_mode_eval = jit_mode_eval, + use_ipex = use_ipex, + bf16 = bf16, + fp16 = fp16, + fp16_opt_level = fp16_opt_level, + half_precision_backend = half_precision_backend, + bf16_full_eval = bf16_full_eval, + fp16_full_eval = fp16_full_eval, + tf32 = tf32, + local_rank = local_rank, + ddp_backend = ddp_backend, + tpu_num_cores = tpu_num_cores, + tpu_metrics_debug = tpu_metrics_debug, + debug = debug, + dataloader_drop_last = dataloader_drop_last, + eval_steps = eval_steps, + dataloader_num_workers = dataloader_num_workers, + dataloader_prefetch_factor = dataloader_prefetch_factor, + past_index = past_index, + run_name = run_name, + disable_tqdm = disable_tqdm, + remove_unused_columns = remove_unused_columns, + label_names = label_names, + load_best_model_at_end = load_best_model_at_end, + metric_for_best_model = metric_for_best_model, + greater_is_better = greater_is_better, + ignore_data_skip = ignore_data_skip, + fsdp = fsdp, + fsdp_min_num_params = fsdp_min_num_params, + fsdp_config = fsdp_config, + fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, + accelerator_config = accelerator_config, + deepspeed = deepspeed, + label_smoothing_factor = label_smoothing_factor, + optim = optim, + optim_args = optim_args, + adafactor = adafactor, + group_by_length = group_by_length, + length_column_name = length_column_name, + report_to = report_to, + ddp_find_unused_parameters = ddp_find_unused_parameters, + ddp_bucket_cap_mb = ddp_bucket_cap_mb, + ddp_broadcast_buffers = ddp_broadcast_buffers, + dataloader_pin_memory = dataloader_pin_memory, + dataloader_persistent_workers = dataloader_persistent_workers, + skip_memory_metrics = skip_memory_metrics, + use_legacy_prediction_loop = use_legacy_prediction_loop, + push_to_hub = push_to_hub, + resume_from_checkpoint = resume_from_checkpoint, + hub_model_id = hub_model_id, + hub_strategy = hub_strategy, + hub_token = hub_token, + hub_private_repo = hub_private_repo, + hub_always_push = hub_always_push, + hub_revision = hub_revision, + gradient_checkpointing = gradient_checkpointing, + gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, + include_inputs_for_metrics = include_inputs_for_metrics, + eval_do_concat_batches = eval_do_concat_batches, + fp16_backend = fp16_backend, + push_to_hub_model_id = push_to_hub_model_id, + push_to_hub_organization = push_to_hub_organization, + push_to_hub_token = push_to_hub_token, + mp_parameters = mp_parameters, + auto_find_batch_size = auto_find_batch_size, + full_determinism = full_determinism, + torchdynamo = torchdynamo, + ray_scope = ray_scope, + ddp_timeout = ddp_timeout, + torch_compile = torch_compile, + torch_compile_backend = torch_compile_backend, + torch_compile_mode = torch_compile_mode, + include_tokens_per_second = include_tokens_per_second, + include_num_input_tokens_seen = include_num_input_tokens_seen, + neftune_noise_alpha = neftune_noise_alpha, + optim_target_modules = optim_target_modules, + batch_eval_metrics = batch_eval_metrics, + eval_on_start = eval_on_start, + use_liger_kernel = use_liger_kernel, + liger_kernel_config = liger_kernel_config, + eval_use_gather_object = eval_use_gather_object, + average_tokens_across_devices = average_tokens_across_devices, + max_length = max_length, + max_prompt_length = max_prompt_length, + max_completion_length = max_completion_length, + beta = beta, + loss_type = loss_type, + desirable_weight = desirable_weight, + undesirable_weight = undesirable_weight, + label_pad_token_id = label_pad_token_id, + padding_value = padding_value, + truncation_mode = truncation_mode, + generate_during_eval = generate_during_eval, + is_encoder_decoder = is_encoder_decoder, + disable_dropout = disable_dropout, + precompute_ref_log_probs = precompute_ref_log_probs, + model_init_kwargs = model_init_kwargs, + ref_model_init_kwargs = ref_model_init_kwargs, + dataset_num_proc = dataset_num_proc, + use_liger_loss = use_liger_loss, + base_model_attribute_name = base_model_attribute_name,**kwargs) + self.vllm_sampling_params = vllm_sampling_params + self.unsloth_num_chunks = unsloth_num_chunks + self.max_seq_length = max_seq_length +pass + +class _UnslothKTOTrainer(Trainer): + r"""""" + + _tag_names = ["trl", "kto"] + + def __init__( + self, + model: Union[PreTrainedModel, nn.Module, str] = None, + ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, + args: KTOConfig = None, + train_dataset: Optional[Dataset] = None, + eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, + processing_class: Optional[ + Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] + ] = None, + data_collator: Optional[DataCollator] = None, + model_init: Optional[Callable[[], PreTrainedModel]] = None, + callbacks: Optional[list[TrainerCallback]] = None, + optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), + preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, + peft_config: Optional[dict] = None, + compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, + model_adapter_name: Optional[str] = None, + ref_adapter_name: Optional[str] = None, + ): + if type(args) is TrainingArguments: + raise ValueError("Please use `KTOConfig` instead TrainingArguments.") + + if not isinstance(model, str) and ref_model is model: + raise ValueError( + "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " + "same as `model`, you must mass a copy of it, or `None` if you use peft." + ) + + if args.model_init_kwargs is None: + model_init_kwargs = {} + elif not isinstance(model, str): + raise ValueError("You passed model_kwargs to the KTOTrainer. But your model is already instantiated.") + else: + model_init_kwargs = args.model_init_kwargs + torch_dtype = model_init_kwargs.get("torch_dtype") + if torch_dtype is not None: + # Convert to `torch.dtype` if an str is passed + if isinstance(torch_dtype, str) and torch_dtype != "auto": + torch_dtype = getattr(torch, torch_dtype) + if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): + raise ValueError( + f"Invalid `torch_dtype` passed to the KTOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." + ) + model_init_kwargs["torch_dtype"] = torch_dtype + + if args.ref_model_init_kwargs is None: + ref_model_init_kwargs = {} + elif not isinstance(ref_model, str): + raise ValueError( + "You passed ref_model_kwargs to the KTOTrainer. But your ref_model is already instantiated." + ) + else: + ref_model_init_kwargs = args.ref_model_init_kwargs + torch_dtype = ref_model_init_kwargs.get("torch_dtype") + if torch_dtype is not None: + # Convert to `torch.dtype` if an str is passed + if isinstance(torch_dtype, str) and torch_dtype != "auto": + torch_dtype = getattr(torch, torch_dtype) + if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): + raise ValueError( + f"Invalid `torch_dtype` passed to the KTOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." + ) + ref_model_init_kwargs["torch_dtype"] = torch_dtype + + if isinstance(model, str): + model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) + + if isinstance(ref_model, str): + ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs) + + # Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16` + # has been called in order to properly call autocast if needed. + self._peft_has_been_casted_to_bf16 = False + + if not is_peft_available() and peft_config is not None: + raise ValueError( + "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it with `pip install peft` to use the PEFT models" + ) + elif is_peft_available() and peft_config is not None: + # if model is a peft model and we have a peft_config, we merge and unload it first + if isinstance(model, PeftModel): + model = model.merge_and_unload() + + if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): + _support_gc_kwargs = hasattr( + args, "gradient_checkpointing_kwargs" + ) and "gradient_checkpointing_kwargs" in list( + inspect.signature(prepare_model_for_kbit_training).parameters + ) + + prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} + + if _support_gc_kwargs: + prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs + + model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) + elif args.gradient_checkpointing: + # For backward compatibility with older versions of transformers + if hasattr(model, "enable_input_require_grads"): + model.enable_input_require_grads() + else: + + def make_inputs_require_grad(module, input, output): + output.requires_grad_(True) + + model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) + + # get peft model with the given config + model = model + if args.bf16 and getattr(model, "is_loaded_in_4bit", False): + peft_module_casting_to_bf16(model) + # If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager + self._peft_has_been_casted_to_bf16 = True + + # For models that use gradient_checkpointing, we need to attach a hook that enables input + # to explicitly have `requires_grad=True`, otherwise training will either silently + # fail or completely fail. + elif args.gradient_checkpointing: + # For backward compatibility with older versions of transformers + if hasattr(model, "enable_input_require_grads"): + model.enable_input_require_grads() + else: + + def make_inputs_require_grad(module, input, output): + output.requires_grad_(True) + + model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) + + if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): + raise ValueError( + "`generate_during_eval=True` requires Weights and Biases or Comet to be installed." + " Please install `wandb` or `comet-ml` to resolve." + ) + + if model is not None: + self.is_encoder_decoder = model.config.is_encoder_decoder + elif args.is_encoder_decoder is None: + raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") + else: + self.is_encoder_decoder = args.is_encoder_decoder + + self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) + self.model_adapter_name = model_adapter_name + self.ref_adapter_name = ref_adapter_name + + if ref_model: + self.ref_model = ref_model + elif self.is_peft_model or args.precompute_ref_log_probs: + # The `model` with adapters turned off will be used as the reference model + self.ref_model = None + else: + self.ref_model = create_reference_model(model) + + if processing_class is None: + raise ValueError( + "max_length or a processing_class must be specified when using the default DPODataCollatorWithPadding" + ) + if args.max_length is None: + warnings.warn( + "When using DPODataCollatorWithPadding, you should set `max_length` in the KTOTrainer's init" + " it will be set to `512` by default, but you should do it yourself in the future.", + UserWarning, + ) + max_length = 512 + if args.max_length is not None: + max_length = args.max_length + + if args.max_prompt_length is None: + warnings.warn( + "When using DPODataCollatorWithPadding, you should set `max_prompt_length` in the KTOTrainer's init" + " it will be set to `128` by default, but you should do it yourself in the future.", + UserWarning, + ) + max_prompt_length = 128 + if args.max_prompt_length is not None: + max_prompt_length = args.max_prompt_length + + max_completion_length = None + if args.max_completion_length is None and self.is_encoder_decoder: + warnings.warn( + "When using DPODataCollatorWithPadding with an encoder decoder architecture, you should set `max_completion_length` in the KTOTrainer's init" + " it will be set to `128` by default, but you should do it yourself in the future.", + UserWarning, + ) + max_completion_length = 128 + if args.max_completion_length is not None and self.is_encoder_decoder: + max_completion_length = args.max_completion_length + + if data_collator is None: + data_collator = DPODataCollatorWithPadding( + pad_token_id=processing_class.pad_token_id, + label_pad_token_id=args.label_pad_token_id, + is_encoder_decoder=self.is_encoder_decoder, + ) + + if args.remove_unused_columns: + args.remove_unused_columns = False + # warn users + warnings.warn( + "When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your KTOConfig" + " we have set it for you, but you should do it yourself in the future.", + UserWarning, + ) + + self.use_dpo_data_collator = True + else: + self.use_dpo_data_collator = False + + # Disable dropout in the model and reference model + if args.disable_dropout: + disable_dropout_in_model(model) + if self.ref_model is not None: + disable_dropout_in_model(self.ref_model) + + self.loss_type = args.loss_type + self.max_length = max_length + self.generate_during_eval = args.generate_during_eval + self.label_pad_token_id = args.label_pad_token_id + self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id + self.max_prompt_length = max_prompt_length + self.truncation_mode = args.truncation_mode + self.max_completion_length = max_completion_length + self.processing_class = processing_class + self.precompute_ref_log_probs = args.precompute_ref_log_probs + + # Not all losses require a KL calculation + self.calculate_KL = True + if self.loss_type in ["apo_zero_unpaired"]: + self.calculate_KL = False + + # Since ref_logs are precomputed on the first call to get_train/eval_dataloader + # keep track of first called to avoid computation of future calls + self._precomputed_train_ref_log_probs = False + self._precomputed_eval_ref_log_probs = False + + # metric + self._stored_metrics = defaultdict(lambda: defaultdict(list)) + + # KTO parameter + self.beta = args.beta + self.desirable_weight = args.desirable_weight + self.undesirable_weight = args.undesirable_weight + self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) + self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) + if self.aux_loss_enabled and self.aux_loss_coef == 0.0: + warnings.warn( + "You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " + "`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " + "greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " + "loss.", + UserWarning, + ) + + # The trainer estimates the number of FLOPs [floating-point operations] using the number of elements in the + # input tensor associated with the key "input_ids". However, in KTO, the sampled data does not include the + # "input_ids" key. Instead, the available keys are "prompt_input_ids" and "completion_input_ids". As a result, + # the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point + # operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's + # "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been + # issued. + model.warnings_issued["estimate_tokens"] = True + + # Compute that only on the main process for faster data processing. + # see: https://github.com/huggingface/trl/pull/1255 + with PartialState().main_process_first(): + # Extract the prompt if needed + train_dataset = train_dataset.map( + maybe_extract_prompt, num_proc=args.dataset_num_proc, desc="Extracting prompt from train dataset" + ) + # Unpair the dataset if needed + train_dataset = maybe_unpair_preference_dataset( + train_dataset, args.dataset_num_proc, desc="Unpairing train dataset" + ) + # Apply the chat template if needed + train_dataset = train_dataset.map( + maybe_apply_chat_template, + fn_kwargs={"tokenizer": processing_class}, + num_proc=args.dataset_num_proc, + desc="Applying chat template to train dataset", + ) + if eval_dataset is not None: + eval_dataset = eval_dataset.map( + maybe_extract_prompt, num_proc=args.dataset_num_proc, desc="Extracting prompt from eval dataset" + ) + eval_dataset = maybe_unpair_preference_dataset( + eval_dataset, args.dataset_num_proc, desc="Unpairing eval dataset" + ) + eval_dataset = eval_dataset.map( + maybe_apply_chat_template, + fn_kwargs={"tokenizer": processing_class}, + num_proc=args.dataset_num_proc, + desc="Applying chat template to eval dataset", + ) + + # Tokenize and prepare the training datasets + train_dataset = train_dataset.map( + _tokenize, + batched=True, + fn_kwargs={"tokenizer": self.processing_class}, + num_proc=args.dataset_num_proc, + desc="Tokenizing train dataset", + ) + + fn_kwargs = { + "prefix": "", + "is_encoder_decoder": self.is_encoder_decoder, + "tokenizer": self.processing_class, + "max_length": self.max_length, + "truncation_mode": self.truncation_mode, + "label_pad_token_id": self.label_pad_token_id, + "max_prompt_length": self.max_prompt_length, + "max_completion_length": self.max_completion_length, + } + + train_dataset = train_dataset.map( + _process_tokens, + fn_kwargs=fn_kwargs, + num_proc=args.dataset_num_proc, + desc="Processing tokenized train dataset", + ) + + # Tokenize and prepare the eval datasets + if eval_dataset is not None: + eval_dataset = eval_dataset.map( + _tokenize, + fn_kwargs={"tokenizer": self.processing_class}, + batched=True, + num_proc=args.dataset_num_proc, + desc="Tokenizing eval dataset", + ) + + eval_dataset = eval_dataset.map( + _process_tokens, + fn_kwargs=fn_kwargs, + num_proc=args.dataset_num_proc, + desc="Processing tokenized eval dataset", + ) + + # Get KL datasets if needed + if self.calculate_KL: + if args.per_device_train_batch_size <= 1: + raise ValueError( + "Actual (not effective) batch size must be > 1. KTO will not work properly because the KL term will be equivalent to the implied reward." + ) + + # create pairs for estimating the KL term by flipping the matched pairs in each batch of size total_batch_size + # i.e., [x_1, y_1], ..., [x_n, y_n] --> [x_1, y_n], ..., [x_n, y_1] = [x'_1, y'_1], ..., [x'_n, y'_n] + train_kl_dataset = train_dataset.map( + _get_kl_dataset, + batched=True, + batch_size=args.per_device_train_batch_size, + num_proc=args.dataset_num_proc, + desc="Extracting KL train dataset", + ) + + fn_kwargs["prefix"] = "KL_" + train_kl_dataset = train_kl_dataset.map( + _process_tokens, + fn_kwargs=fn_kwargs, + num_proc=args.dataset_num_proc, + remove_columns=[c for c in train_kl_dataset.column_names if c in train_dataset.column_names], + desc="Processing tokenized train KL dataset", + ) + + # merge the datasets + train_dataset = concatenate_datasets([train_dataset, train_kl_dataset], axis=1) + + if eval_dataset is not None: + # Get KL dataset + eval_kl_dataset = eval_dataset.map( + _get_kl_dataset, + batched=True, + batch_size=args.per_device_train_batch_size, + num_proc=args.dataset_num_proc, + desc="Extracting eval KL dataset", + ) + + eval_kl_dataset = eval_kl_dataset.map( + _process_tokens, + fn_kwargs=fn_kwargs, + num_proc=args.dataset_num_proc, + remove_columns=[c for c in eval_kl_dataset.column_names if c in eval_dataset.column_names], + desc="Processing tokenized eval KL dataset", + ) + + # merge the datasets + eval_dataset = concatenate_datasets([eval_dataset, eval_kl_dataset], axis=1) + + # calculate dataset desirability balance + num_desirable = max(sum(train_dataset["label"]), 1) + num_undesirable = max(len(train_dataset["label"]) - num_desirable, 1) # "label" is binary + + if num_desirable != num_undesirable: + # The lower and upper bounds come from Eq. [8] of https://huggingface.co/papers/2402.01306 + des_weight_lower_bound = round((num_undesirable * self.undesirable_weight / num_desirable) * 1, 2) + des_weight_upper_bound = round((num_undesirable * self.undesirable_weight / num_desirable) * 1.33, 2) + und_weight_lower_bound = round((num_desirable * self.desirable_weight / num_undesirable) / 1.33, 2) + und_weight_upper_bound = round((num_desirable * self.desirable_weight / num_undesirable) / 1, 2) + + des_weight_in_range = des_weight_lower_bound <= self.desirable_weight <= des_weight_upper_bound + und_weight_in_range = und_weight_lower_bound <= self.undesirable_weight <= und_weight_upper_bound + + if not (des_weight_in_range or und_weight_in_range): + warnings.warn( + "You have different amounts of desirable/positive and undesirable/negative examples but the " + "weights on the desirable and undesirable losses don't seem to be in an ideal range. Based " + f"on your data, we recommend EITHER " + f"desirable_weight in [{des_weight_lower_bound}, {des_weight_upper_bound}] or " + f"undesirable_weight in [{und_weight_lower_bound}, {und_weight_upper_bound}] (but NOT BOTH). " + "See the documentation on how to optimally set these weights.", + UserWarning, + ) + + super().__init__( + model=model, + args=args, + data_collator=data_collator, + train_dataset=train_dataset, + eval_dataset=eval_dataset, + processing_class=processing_class, + model_init=model_init, + compute_metrics=compute_metrics, + callbacks=callbacks, + optimizers=optimizers, + preprocess_logits_for_metrics=preprocess_logits_for_metrics, + ) + + # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the + # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set + # self.model_accepts_loss_kwargs to False to enable scaling. + self.model_accepts_loss_kwargs = False + + # Add tags for models that have been loaded with the correct transformers version + if hasattr(self.model, "add_model_tags"): + self.model.add_model_tags(self._tag_names) + + if not hasattr(self, "accelerator"): + raise AttributeError( + "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." + ) + + # Deepspeed Zero-3 does not support precompute_ref_log_probs + if self.is_deepspeed_enabled: + if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs: + raise ValueError( + "You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`." + ) + + if self.ref_model is None: + if not (self.is_peft_model or self.precompute_ref_log_probs): + raise ValueError( + "No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`" + ) + else: + if self.is_deepspeed_enabled: + self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) + else: + self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) + + # Import Liger loss if enabled + if self.args.use_liger_loss: + if not is_liger_kernel_available(): + raise ImportError( + "You set `use_liger_loss=True` but the liger kernel is not available. " + "Please install liger-kernel first: `pip install liger-kernel`" + ) + if self.loss_type in ["apo_zero_unpaired"]: + raise ValueError( + "You cannot set `loss_type='apo_zero_unpaired'` with liger-kernel." + "Only KTO loss is supported with liger-kernel." + ) + if self.precompute_ref_log_probs: + raise ValueError( + "You cannot use `precompute_ref_log_probs=True` with liger kernel. Please set " + "`precompute_ref_log_probs=False`." + ) + if self.is_peft_model or self.ref_adapter_name is not None: + raise ValueError( + "You cannot use `use_liger_loss=True` with Peft models. Please set `use_liger_loss=False`." + ) + self.kto_loss_fn = LigerFusedLinearKTOLoss( + ignore_index=self.label_pad_token_id, beta=self.beta, use_ref_model=(self.ref_model is not None) + ) + + @contextmanager + def null_ref_context(self): + """Context manager for handling null reference model (that is, peft adapter manipulation).""" + with ( + self.accelerator.unwrap_model(self.model).disable_adapter() + if self.is_peft_model and not self.ref_adapter_name + else nullcontext() + ): + if self.ref_adapter_name: + self.model.set_adapter(self.ref_adapter_name) + yield + if self.ref_adapter_name: + self.model.set_adapter(self.model_adapter_name or "default") + + def get_train_dataloader(self) -> DataLoader: + """ + Returns the training [`~torch.utils.data.DataLoader`]. + + Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`. + """ + + if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs: + dataloader_params = { + "batch_size": self.args.per_device_train_batch_size, + "collate_fn": self.data_collator, + "num_workers": self.args.dataloader_num_workers, + "pin_memory": self.args.dataloader_pin_memory, + "shuffle": False, + } + + # prepare dataloader + data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params)) + reference_completion_logps = [] + reference_KL_logps = [] + + for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"): + reference_completion_logp, reference_KL_logp = self.compute_reference_log_probs(padded_batch) + + reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) + reference_completion_logps.append(reference_completion_logp.cpu()) + + if self.calculate_KL: + reference_KL_logp = self.accelerator.gather_for_metrics(reference_KL_logp) + reference_KL_logps.append(reference_KL_logp.cpu()) + + self.train_dataset = self.train_dataset.add_column( + name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() + ) + + if self.calculate_KL: + self.train_dataset = self.train_dataset.add_column( + name="reference_KL_logps", column=torch.cat(reference_KL_logps).float().numpy() + ) + + self._precomputed_train_ref_log_probs = True + + return super().get_train_dataloader() + + def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: + """ + Returns the evaluation [`~torch.utils.data.DataLoader`]. + + Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`. + + Args: + eval_dataset (`torch.utils.data.Dataset`, *optional*): + If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted + by the `model.forward()` method are automatically removed. It must implement `__len__`. + """ + if eval_dataset is None and self.eval_dataset is None: + raise ValueError("Trainer: evaluation requires an eval_dataset.") + eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset + + if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs: + dataloader_params = { + "batch_size": self.args.per_device_eval_batch_size, + "collate_fn": self.data_collator, + "num_workers": self.args.dataloader_num_workers, + "pin_memory": self.args.dataloader_pin_memory, + "shuffle": False, + } + + # prepare dataloader + data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params)) + + reference_completion_logps = [] + reference_KL_logps = [] + + for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"): + reference_completion_logp, reference_KL_logp = self.compute_reference_log_probs(padded_batch) + + reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) + reference_completion_logps.append(reference_completion_logp.cpu()) + + if self.calculate_KL: + reference_KL_logp = self.accelerator.gather_for_metrics(reference_KL_logp) + reference_KL_logps.append(reference_KL_logp.cpu()) + + eval_dataset = eval_dataset.add_column( + name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() + ) + if self.calculate_KL: + eval_dataset = eval_dataset.add_column( + name="reference_KL_logps", column=torch.cat(reference_KL_logps).float().numpy() + ) + + # Save calculated reference_chosen_logps and reference_rejected_logps to the eval_dataset for subsequent runs + if self.eval_dataset is not None: + self.eval_dataset = eval_dataset + self._precomputed_eval_ref_log_probs = True + + return super().get_eval_dataloader(eval_dataset=eval_dataset) + + def compute_reference_log_probs(self, padded_batch: dict) -> dict: + """Computes log probabilities of the reference model for a single padded batch of a KTO specific dataset.""" + with torch.no_grad(): + if self.ref_model is None: + with self.null_ref_context(): + if self.is_encoder_decoder: + completion_logits = self.model( + padded_batch["prompt_input_ids"], + attention_mask=padded_batch["prompt_attention_mask"], + decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), + labels=padded_batch["completion_labels"], + ).logits + + if self.calculate_KL: + KL_logits = self.model( + padded_batch["KL_prompt_input_ids"], + attention_mask=padded_batch["KL_prompt_attention_mask"], + decoder_input_ids=padded_batch.get("KL_completion_decoder_input_ids"), + labels=padded_batch["KL_completion_labels"], + ).logits + else: + completion_logits = self.model( + padded_batch["completion_input_ids"], + attention_mask=padded_batch["completion_attention_mask"], + ).logits + + if self.calculate_KL: + KL_logits = self.model( + padded_batch["KL_completion_input_ids"], + attention_mask=padded_batch["KL_completion_attention_mask"], + ).logits + else: + if self.is_encoder_decoder: + completion_logits = self.ref_model( + padded_batch["prompt_input_ids"], + attention_mask=padded_batch["prompt_attention_mask"], + decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), + labels=padded_batch["completion_labels"], + ).logits + + if self.calculate_KL: + KL_logits = self.ref_model( + padded_batch["KL_prompt_input_ids"], + attention_mask=padded_batch["KL_prompt_attention_mask"], + decoder_input_ids=padded_batch.get("KL_completion_decoder_input_ids"), + labels=padded_batch["KL_completion_labels"], + ).logits + else: + completion_logits = self.ref_model( + padded_batch["completion_input_ids"], attention_mask=padded_batch["completion_attention_mask"] + ).logits + + if self.calculate_KL: + KL_logits = self.ref_model( + padded_batch["KL_completion_input_ids"], + attention_mask=padded_batch["KL_completion_attention_mask"], + ).logits + + completion_logps = self.get_batch_logps( + completion_logits, + padded_batch["completion_labels"], + average_log_prob=False, + is_encoder_decoder=self.is_encoder_decoder, + label_pad_token_id=self.label_pad_token_id, + ) + + if self.calculate_KL: + KL_logps = self.get_batch_logps( + KL_logits, + padded_batch["KL_completion_labels"], + average_log_prob=False, + is_encoder_decoder=self.is_encoder_decoder, + label_pad_token_id=self.label_pad_token_id, + ) + else: + KL_logps = None + + return completion_logps, KL_logps + + @staticmethod + def get_batch_logps( + logits: torch.FloatTensor, + labels: torch.LongTensor, + average_log_prob: bool = False, + label_pad_token_id: int = -100, + is_encoder_decoder: bool = False, + ) -> torch.FloatTensor: + """Compute the log probabilities of the given labels under the given logits. + + Args: + logits: + Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) + labels: + Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are + ignored. Shape: (batch_size, sequence_length) + average_log_prob: + If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the + log probabilities of the (non-masked) tokens. + + Returns: + A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the + given logits. + """ + if logits.shape[:-1] != labels.shape: + raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") + + if not is_encoder_decoder: + labels = labels[:, 1:].clone() + logits = logits[:, :-1, :] + else: + # Fixes end-dec RuntimeError + labels = labels.clone() + + loss_mask = labels != label_pad_token_id + + # dummy token; we'll ignore the losses on these tokens later + labels[labels == label_pad_token_id] = 0 + + per_token_logps = selective_log_softmax(logits, labels) + + if average_log_prob: + return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) + else: + return (per_token_logps * loss_mask).sum(-1) + + def forward( + self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] + ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + KL_logps = self._compute_kl_logps(model, batch) + + model_kwargs = ( + { + "labels": batch["completion_labels"], + "decoder_input_ids": batch.get("completion_decoder_input_ids"), + } + if self.is_encoder_decoder + else {} + ) + if self.aux_loss_enabled: + model_kwargs["output_router_logits"] = True + + outputs = model( + batch["completion_input_ids"], + attention_mask=batch["completion_attention_mask"], + **model_kwargs, + ) + completion_logits = outputs.logits + + completion_logps = self.get_batch_logps( + completion_logits, + batch["completion_labels"], + average_log_prob=False, + is_encoder_decoder=self.is_encoder_decoder, + label_pad_token_id=self.label_pad_token_id, + ) + + if completion_logps.shape[0] != len(batch["label"]): + raise ValueError( + "There is a mismatch between the number of examples in this batch and the number of " + "examples for which an output sequence was predicted." + ) + + chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is True] + rejected_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is False] + + chosen_logps = completion_logps[chosen_idx, ...] + rejected_logps = completion_logps[rejected_idx, ...] + + chosen_logits = completion_logits[chosen_idx, ...] + rejected_logits = completion_logits[rejected_idx, ...] + + if self.aux_loss_enabled: + return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps, outputs.aux_loss) + else: + return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps) + + def kto_loss( + self, + policy_chosen_logps: torch.FloatTensor, + policy_rejected_logps: torch.FloatTensor, + policy_KL_logps: torch.FloatTensor, + reference_chosen_logps: torch.FloatTensor, + reference_rejected_logps: torch.FloatTensor, + reference_KL_logps: torch.FloatTensor, + ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: + """Compute the KTO loss for a batch of policy and reference model log probabilities. + + Args: + policy_chosen_logps: + Log probabilities of the policy model for the chosen responses. Shape: (num(chosen) in batch_size,) + policy_rejected_logps: + Log probabilities of the policy model for the rejected responses. Shape: (num(rejected) in batch_size,) + policy_KL_logps: Log probabilities of the policy model for the KL responses. Shape: (batch_size,) + reference_chosen_logps: + Log probabilities of the reference model for the chosen responses. Shape: (num(chosen) in batch_size,) + reference_rejected_logps: + Log probabilities of the reference model for the rejected responses. Shape: (num(rejected) in + batch_size,) + reference_KL_logps: Log probabilities of the reference model for the KL responses. Shape: (batch_size,) + + Returns: + A tuple of four tensors: (losses, chosen_rewards, rejected_rewards, KL). The losses tensor contains the KTO + loss for each example in the batch. The chosen_rewards and rejected_rewards tensors contain the rewards for + the chosen and rejected responses, respectively. The KL tensor contains the detached KL divergence estimate + between the policy and reference models. + """ + if self.calculate_KL: + kl = (policy_KL_logps - reference_KL_logps).mean().detach() + kl = self.accelerator.gather_for_metrics(kl).mean().clamp(min=0) + else: + kl = torch.zeros(1).to(policy_chosen_logps.device) + + # Chosen losses + if policy_chosen_logps.shape[0] != 0 or reference_chosen_logps.shape[0] != 0: + chosen_logratios = policy_chosen_logps - reference_chosen_logps + + if self.loss_type == "kto": + # Eqn (7) of the KTO paper (https://huggingface.co/papers/2402.01306) + chosen_losses = 1 - F.sigmoid(self.beta * (chosen_logratios - kl)) + elif self.loss_type == "apo_zero_unpaired": + # Unpaired variant of Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266) + # Use this loss when you believe the chosen outputs are better than your model's default output + chosen_losses = 1 - F.sigmoid(self.beta * chosen_logratios) + + chosen_rewards = self.beta * chosen_logratios.detach() + + else: + # lists can't be empty -- if they are, then accelerate.gather will hang + chosen_losses = torch.Tensor([]).to(self.accelerator.device) + chosen_rewards = torch.Tensor([]).to(self.accelerator.device) + + # Rejected losses + if policy_rejected_logps.shape[0] != 0 or reference_rejected_logps.shape[0] != 0: + rejected_logratios = policy_rejected_logps - reference_rejected_logps + + if self.loss_type == "kto": + rejected_losses = 1 - F.sigmoid(self.beta * (kl - rejected_logratios)) + elif self.loss_type == "apo_zero_unpaired": + rejected_losses = F.sigmoid(self.beta * rejected_logratios) + + rejected_rewards = self.beta * rejected_logratios.detach() + else: + # lists can't be empty -- if they are, then accelerate.gather will hang + rejected_losses = torch.Tensor([]).to(self.accelerator.device) + rejected_rewards = torch.Tensor([]).to(self.accelerator.device) + + losses = torch.cat( + (self.desirable_weight * chosen_losses, self.undesirable_weight * rejected_losses), + 0, + ) + + return losses, chosen_rewards, rejected_rewards, kl + + def _compute_kl_logps(self, model, batch): + """Compute KL log probabilities for a given batch.""" + KL_logps = None + if self.calculate_KL: + if self.is_encoder_decoder: + KL_model_kwargs = { + "input_ids": batch["KL_prompt_input_ids"], + "attention_mask": batch["KL_prompt_attention_mask"], + "labels": batch["KL_completion_labels"], + "decoder_input_ids": batch.get("KL_completion_decoder_input_ids"), + } + else: + KL_model_kwargs = { + "input_ids": batch["KL_completion_input_ids"], + "attention_mask": batch["KL_completion_attention_mask"], + } + + with torch.no_grad(): + KL_logits = model(**KL_model_kwargs).logits + + KL_logps = self.get_batch_logps( + KL_logits, + batch["KL_completion_labels"], + average_log_prob=False, + is_encoder_decoder=self.is_encoder_decoder, + label_pad_token_id=self.label_pad_token_id, + ) + return KL_logps + + def _compute_loss_liger(self, model, batch): + """ + Compute the KTO loss using the Liger-Kernel's LigerFusedLinearKTOLoss. + + Args: + model: + The policy model used for generating log probabilities and outputs. It could be an encoder-decoder + model or a regular language model. + batch: A dictionary containing the input data and labels for the batch. + + Returns: + A dictionary containing the following keys: + - "loss": The computed KTO loss for the batch. + - "chosen_logits_sum": Sum of the logits for the chosen responses from the policy model. + - "rejected_logits_sum": Sum of the logits for the rejected responses from the policy model. + - "chosen_logps": Log probabilities of the chosen responses from the policy model. + - "rejected_logps": Log probabilities of the rejected responses from the policy model. + - "chosen_rewards": Rewards for the chosen responses. + - "rejected_rewards": Rewards for the rejected responses. + - "kl": The KL divergence between the policy and reference models (detached). + + If auxiliary loss is enabled, the dictionary will also include: + - "aux_loss": The auxiliary loss from the model outputs. + """ + policy_KL_logps = self._compute_kl_logps(model, batch) + reference_KL_logps = self._compute_kl_logps(self.ref_model, batch) + if self.calculate_KL: + kl = (policy_KL_logps - reference_KL_logps).mean().detach() + kl = self.accelerator.gather_for_metrics(kl).mean().clamp(min=0) + else: + kl = torch.zeros(1).to(self.accelerator.device) + + model_kwargs = ( + { + "labels": batch["completion_labels"], + "decoder_input_ids": batch.get("completion_decoder_input_ids"), + } + if self.is_encoder_decoder + else {} + ) + if self.aux_loss_enabled: + model_kwargs["output_router_logits"] = True + + if self.is_encoder_decoder: + # 1. Get encoder outputs + encoder_outputs = model.get_encoder()( + batch["completion_input_ids"], + attention_mask=batch["completion_attention_mask"], + return_dict=True, + **model_kwargs, + ) + # 2. Get decoder outputs + outputs = model.get_decoder()( + input_ids=model_kwargs["decoder_input_ids"], + encoder_hidden_states=encoder_outputs.last_hidden_state, + use_cache=False, + **model_kwargs, + ) + # 1. Get reference encoder outputs + ref_encoder_outputs = self.ref_model.get_encoder()( + batch["completion_input_ids"], + attention_mask=batch["completion_attention_mask"], + return_dict=True, + **model_kwargs, + ) + # 2. Get reference decoder outputs + ref_outputs = self.ref_model.get_decoder()( + input_ids=model_kwargs["decoder_input_ids"], + encoder_hidden_states=ref_encoder_outputs.last_hidden_state, + use_cache=False, + **model_kwargs, + ) + else: + # skip the lm head and get the last hidden state + if hasattr(model, "get_decoder"): + base_model = model.get_decoder() + else: + base_model = getattr(model, self.args.base_model_attribute_name) + outputs = base_model( + batch["completion_input_ids"], + attention_mask=batch["completion_attention_mask"], + use_cache=False, + **model_kwargs, + ) + + # reference model + if hasattr(self.ref_model, "get_decoder"): + ref_base_model = self.ref_model.get_decoder() + else: + ref_base_model = getattr(self.ref_model, self.args.base_model_attribute_name) + ref_outputs = ref_base_model( + batch["completion_input_ids"], + attention_mask=batch["completion_attention_mask"], + use_cache=False, + **model_kwargs, + ) + lm_head = model.get_output_embeddings() + ref_lm_head = self.ref_model.get_output_embeddings() + + ( + loss, + ( + chosen_logps_sum, + rejected_logps_sum, + chosen_logits_sum, + rejected_logits_sum, + chosen_rewards_sum, + rejected_rewards_sum, + ), + ) = self.kto_loss_fn( + _input=outputs.last_hidden_state[:, :-1] if not self.is_encoder_decoder else outputs.last_hidden_state, + lin_weight=lm_head.weight, + target=batch["completion_labels"][:, 1:], + bias=lm_head.bias if hasattr(lm_head, "bias") else None, + preference_labels=torch.tensor(batch["label"], dtype=torch.bool).to(self.accelerator.device), + ref_input=ref_outputs.last_hidden_state[:, :-1] + if not self.is_encoder_decoder + else outputs.last_hidden_state, + ref_weight=ref_lm_head.weight, + ref_bias=ref_lm_head.bias if hasattr(lm_head, "bias") else None, + kl=kl, + ) + + output = { + "loss": loss, + "chosen_logits_sum": chosen_logits_sum, + "rejected_logits_sum": rejected_logits_sum, + "chosen_logps_sum": chosen_logps_sum, + "rejected_logps_sum": rejected_logps_sum, + "chosen_rewards_sum": chosen_rewards_sum, + "rejected_rewards_sum": rejected_rewards_sum, + "kl": kl, + } + if self.aux_loss_enabled: + output["aux_loss"] = outputs.aux_loss + + return output + + def get_batch_loss_metrics( + self, + model, + batch: dict[str, Union[list, torch.LongTensor]], + ): + """Compute the KTO loss and other metrics for the given batch of inputs for train or test.""" + metrics = {} + batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()} + + labels = torch.tensor(batch["label"]) + num_chosen = labels.sum().to(self.accelerator.device) + num_rejected = (len(labels) - num_chosen).to(self.accelerator.device) + + if self.args.use_liger_loss: + model_output = self._compute_loss_liger(model, batch) + losses = model_output["loss"] + policy_chosen_logits = model_output["chosen_logits_sum"] + policy_rejected_logits = model_output["rejected_logits_sum"] + policy_chosen_logps = model_output["chosen_logps_sum"] + policy_rejected_logps = model_output["rejected_logps_sum"] + chosen_rewards = model_output["chosen_rewards_sum"] + rejected_rewards = model_output["rejected_rewards_sum"] + kl = model_output["kl"] + if self.aux_loss_enabled: + aux_loss = model_output["aux_loss"] + else: + forward_output = self.forward(model, batch) + ( + policy_chosen_logps, + policy_rejected_logps, + policy_chosen_logits, + policy_rejected_logits, + policy_KL_logps, + ) = forward_output[:5] + if self.aux_loss_enabled: + aux_loss = forward_output[5] + + # if reference_logps in batch use them, otherwise use the reference model + if "reference_logps" in batch: + chosen_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is True] + rejected_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is False] + + reference_chosen_logps = batch["reference_logps"][chosen_idx, ...] + reference_rejected_logps = batch["reference_logps"][rejected_idx, ...] + if self.calculate_KL: + reference_KL_logps = batch["reference_KL_logps"] + else: + reference_KL_logps = None + else: + with torch.no_grad(): + if self.ref_model is None: + with self.null_ref_context(): + ( + reference_chosen_logps, + reference_rejected_logps, + _, + _, + reference_KL_logps, + ) = self.forward(self.model, batch)[:5] + else: + ( + reference_chosen_logps, + reference_rejected_logps, + _, + _, + reference_KL_logps, + ) = self.forward(self.ref_model, batch)[:5] + + losses, chosen_rewards, rejected_rewards, kl = self.kto_loss( + policy_chosen_logps, + policy_rejected_logps, + policy_KL_logps, + reference_chosen_logps, + reference_rejected_logps, + reference_KL_logps, + ) + + metrics["kl"] = kl.item() + + all_num_chosen = self.accelerator.gather_for_metrics(num_chosen).sum().item() + all_num_rejected = self.accelerator.gather_for_metrics(num_rejected).sum().item() + + if all_num_chosen > 0: + metrics["rewards/chosen_sum"] = ( + self.accelerator.gather_for_metrics(chosen_rewards.nansum()).nansum().item() + ) + metrics["logps/chosen_sum"] = ( + self.accelerator.gather_for_metrics(policy_chosen_logps.nansum()).nansum().item() + ) + metrics["logits/chosen_sum"] = ( + self.accelerator.gather_for_metrics(policy_chosen_logits.nansum()).nansum().item() + ) + metrics["count/chosen"] = all_num_chosen + + if all_num_rejected > 0: + metrics["rewards/rejected_sum"] = ( + self.accelerator.gather_for_metrics(rejected_rewards.nansum()).nansum().item() + ) + metrics["logps/rejected_sum"] = ( + self.accelerator.gather_for_metrics(policy_rejected_logps.nansum()).nansum().item() + ) + metrics["logits/rejected_sum"] = ( + self.accelerator.gather_for_metrics(policy_rejected_logits.nansum()).nansum().item() + ) + metrics["count/rejected"] = all_num_rejected + + loss = losses.nanmean() + if self.aux_loss_enabled: + loss += self.aux_loss_coef * aux_loss + + return loss, metrics + + def compute_loss( + self, + model: Union[PreTrainedModel, nn.Module], + inputs: dict[str, Union[torch.Tensor, Any]], + return_outputs=False, + num_items_in_batch=None, + ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: + compute_loss_context_manager = ( + autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() + ) + + with compute_loss_context_manager: + loss, metrics = self.get_batch_loss_metrics(model, inputs) + + # Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class: + loss = loss.to(self.args.device) + # force log the metrics + if self.accelerator.is_main_process: + self.store_metrics(metrics, train_eval="train") + + if return_outputs: + return (loss, metrics) + return loss + + def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: + for key, value in metrics.items(): + self._stored_metrics[train_eval][key].append(value) + + def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Optional[torch.utils.data.Sampler]: + if dataset is None: + dataset = self.train_dataset + if dataset is None or not has_length(dataset): + return None + return SequentialSampler(dataset) + + def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]: + """Generate samples from the model and reference model for the given batch of inputs.""" + + # If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with + # the torch amp context manager as some hidden states are silently casted to full precision. + generate_context_manager = ( + autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() + ) + + with generate_context_manager: + policy_output = model.generate( + input_ids=batch["prompt_input_ids"], + attention_mask=batch["prompt_attention_mask"], + max_length=self.max_length, + do_sample=True, + pad_token_id=self.processing_class.pad_token_id, + ) + + # if reference_output in batch use that otherwise use the reference model + if "reference_output" in batch: + reference_output = batch["reference_output"] + else: + if self.ref_model is None: + with self.null_ref_context(): + reference_output = self.model.generate( + input_ids=batch["prompt_input_ids"], + attention_mask=batch["prompt_attention_mask"], + max_length=self.max_length, + do_sample=True, + pad_token_id=self.processing_class.pad_token_id, + ) + else: + reference_output = self.ref_model.generate( + input_ids=batch["prompt_input_ids"], + attention_mask=batch["prompt_attention_mask"], + max_length=self.max_length, + do_sample=True, + pad_token_id=self.processing_class.pad_token_id, + ) + + policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) + policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) + + reference_output = pad_to_length(reference_output, self.max_length, self.processing_class.pad_token_id) + reference_output_decoded = self.processing_class.batch_decode(reference_output, skip_special_tokens=True) + + return policy_output_decoded, reference_output_decoded + + def prediction_step( + self, + model: Union[PreTrainedModel, nn.Module], + inputs: dict[str, Union[torch.Tensor, Any]], + prediction_loss_only: bool, + ignore_keys: Optional[list[str]] = None, + ): + if ignore_keys is None: + if hasattr(model, "config"): + ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) + else: + ignore_keys = [] + + prediction_context_manager = ( + autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() + ) + with torch.no_grad(), prediction_context_manager: + loss, metrics = self.get_batch_loss_metrics(model, inputs) + + # force log the metrics + if self.accelerator.is_main_process: + self.store_metrics(metrics, train_eval="eval") + + if prediction_loss_only: + return (loss.detach(), None, None) + + # logits for the chosen and rejected samples from model + logits_dict = {} + if "logits/chosen_sum" in metrics: + logits_dict["eval_logits/chosen"] = metrics["logits/chosen_sum"] + if "logits/rejected_sum" in metrics: + logits_dict["eval_logits/rejected"] = metrics["logits/rejected_sum"] + logits = [v for k, v in logits_dict.items() if k not in ignore_keys] + logits = torch.tensor(logits, device=self.accelerator.device) + labels = torch.zeros(logits.shape[0], device=self.accelerator.device) + + return (loss.detach(), logits, labels) + + def evaluation_loop( + self, + dataloader: DataLoader, + description: str, + prediction_loss_only: Optional[bool] = None, + ignore_keys: Optional[list[str]] = None, + metric_key_prefix: str = "eval", + ) -> EvalLoopOutput: + """ + Overriding built-in evaluation loop to store metrics for each batch. Prediction/evaluation loop, shared by + `Trainer.evaluate()` and `Trainer.predict()`. + + Works both with or without labels. + """ + + # Sample and save to game log if requested (for one batch to save time) + if self.generate_during_eval: + # Generate random indices within the range of the total number of samples + num_samples = len(dataloader.dataset) + random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) + + # Use dataloader.dataset.select to get the random batch without iterating over the DataLoader + random_batch_dataset = dataloader.dataset.select(random_indices) + random_batch = self.data_collator(random_batch_dataset) + random_batch = self._prepare_inputs(random_batch) + + target_labels = torch.tensor(random_batch["label"], dtype=torch.bool, device=self.accelerator.device) + target_indicies = torch.where(~target_labels)[0] + target_batch = { + "prompt_input_ids": random_batch["prompt_input_ids"][target_indicies], + "prompt_attention_mask": random_batch["prompt_attention_mask"][target_indicies], + "prompt": itemgetter(*target_indicies)(random_batch["prompt"]), + } + policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, target_batch) + + table = pd.DataFrame( + columns=["Prompt", "Policy", "Ref Model"], + data=[ + [prompt, pol[len(prompt) :], ref[len(prompt) :]] + for prompt, pol, ref in zip(target_batch["prompt"], policy_output_decoded, ref_output_decoded) + ], + ) + if "wandb" in self.args.report_to: + wandb.log({"game_log": wandb.Table(data=table)}) + + if "comet_ml" in self.args.report_to: + log_table_to_comet_experiment( + name="game_log.csv", + table=table, + ) + + # Base evaluation + initial_output = super().evaluation_loop( + dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix + ) + + return initial_output + + def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: + """ + Log `logs` on the various objects watching training, including stored metrics. + + Args: + logs (`dict[str, float]`): + The values to log. + start_time (`float` or `None`, *optional*, defaults to `None`): + Start time of the training. + """ + # logs either has 'loss' or 'eval_loss' + train_eval = "train" if "loss" in logs else "eval" + # train metrics should have no prefix, eval should have 'eval_' + prefix = "eval_" if train_eval == "eval" else "" + # accumulate average metrics from sums and lengths + for split in ["chosen", "rejected"]: + if f"count/{split}" in self._stored_metrics[train_eval]: + count_sum = torch.Tensor(self._stored_metrics[train_eval][f"count/{split}"]).sum().item() + for metric in ["rewards", "logps", "logits"]: + logs[f"{prefix}{metric}/{split}"] = ( + torch.Tensor(self._stored_metrics[train_eval][f"{metric}/{split}_sum"]).sum().item() + / count_sum + ) + # delete obsolete metric + del self._stored_metrics[train_eval][f"{metric}/{split}_sum"] + del self._stored_metrics[train_eval][f"count/{split}"] + # calculate reward margin + if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs: + logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"] + # Add averaged stored metrics to logs + for key, metrics in self._stored_metrics[train_eval].items(): + logs[f"{prefix}{key}"] = torch.Tensor(metrics).mean().item() + del self._stored_metrics[train_eval] + return super().log(logs, start_time) + + # Ensure the model card is saved along with the checkpoint + def _save_checkpoint(self, model, trial): + if self.args.hub_model_id is None: + model_name = Path(self.args.output_dir).name + else: + model_name = self.args.hub_model_id.split("/")[-1] + self.create_model_card(model_name=model_name) + super()._save_checkpoint(model, trial) + + def create_model_card( + self, + model_name: Optional[str] = None, + dataset_name: Optional[str] = None, + tags: Union[str, list[str], None] = None, + ): + """ + Creates a draft of a model card using the information available to the `Trainer`. + + Args: + model_name (`str` or `None`, *optional*, defaults to `None`): + Name of the model. + dataset_name (`str` or `None`, *optional*, defaults to `None`): + Name of the dataset used for training. + tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): + Tags to be associated with the model card. + """ + if not self.is_world_process_zero(): + return + + if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): + base_model = self.model.config._name_or_path + else: + base_model = None + + # normalize `tags` to a mutable set + if tags is None: + tags = set() + elif isinstance(tags, str): + tags = {tags} + else: + tags = set(tags) + + if hasattr(self.model.config, "unsloth_version"): + tags.add("unsloth") + + tags.update(self._tag_names) + + citation = textwrap.dedent("""\ + @article{ethayarajh2024kto, + title = {{KTO: Model Alignment as Prospect Theoretic Optimization}}, + author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela}, + year = 2024, + eprint = {arXiv:2402.01306}, + }""") + + model_card = generate_model_card( + base_model=base_model, + model_name=model_name, + hub_model_id=self.hub_model_id, + dataset_name=dataset_name, + tags=tags, + wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None, + comet_url=get_comet_experiment_url(), + trainer_name="KTO", + trainer_citation=citation, + paper_title="KTO: Model Alignment as Prospect Theoretic Optimization", + paper_id="2402.01306", + ) + + model_card.save(os.path.join(self.args.output_dir, "README.md")) +class UnslothKTOTrainer(_UnslothKTOTrainer): + """ + + Initialize KTOTrainer. + + Args: + model (`transformers.PreTrainedModel`): + The model to train, preferably an `AutoModelForSequenceClassification`. + ref_model (`PreTrainedModelWrapper`): + Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation + and loss. If no reference model is provided, the trainer will create a reference model with the same + architecture as the model to be optimized. + args (`KTOConfig`): + The arguments to use for training. + train_dataset (`datasets.Dataset`): + The dataset to use for training. + eval_dataset (`datasets.Dataset`): + The dataset to use for evaluation. + processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`): + Processing class used to process the data. If provided, will be used to automatically process the inputs + for the model, and it will be saved along the model to make it easier to rerun an interrupted training or + reuse the fine-tuned model. + data_collator (`transformers.DataCollator`, *optional*, defaults to `None`): + The data collator to use for training. If None is specified, the default data collator + (`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the + sequences in the batch, given a dataset of paired sequences. + model_init (`Callable[[], transformers.PreTrainedModel]`): + The model initializer to use for training. If None is specified, the default model initializer will be + used. + callbacks (`list[transformers.TrainerCallback]`): + The callbacks to use for training. + optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): + The optimizer and scheduler to use for training. + preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): + The function to use to preprocess the logits before computing the metrics. + peft_config (`dict`, defaults to `None`): + The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in + a PEFT model. + compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): + The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to + metric values. + model_adapter_name (`str`, defaults to `None`): + Name of the train target PEFT adapter, when using LoRA with multiple adapters. + ref_adapter_name (`str`, defaults to `None`): + Name of the reference PEFT adapter, when using LoRA with multiple adapters. + + """ + def __init__( + self, + model = None, + ref_model = None, + args = None, + train_dataset = None, + eval_dataset = None, + processing_class = None, + data_collator = None, + model_init = None, + callbacks = None, + preprocess_logits_for_metrics = None, + peft_config = None, + compute_metrics = None, + model_adapter_name = None, + ref_adapter_name = None, + **kwargs + ): + if args is None: args = UnslothKTOConfig() + use_bf16 = getattr(args, 'bf16', False) + if type(use_bf16) is not bool: use_bf16 = False + use_fp16 = getattr(args, 'fp16', False) + if type(use_fp16) is not bool: use_fp16 = False + force_float32 = False + if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': + print('Unsloth: Switching to float32 training since model cannot work with float16') + force_float32 = True + mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') + dtype = getattr(model.config, 'torch_dtype', None) + if dtype is None: dtype = model.get_input_embeddings().dtype + from unsloth_zoo.utils import _get_dtype + dtype = _get_dtype(dtype) + float16 = dtype == torch.float16 + if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') + if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') + if force_float32: + args.fp16 = False + args.bf16 = False + os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' + elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': + args.fp16 = float16 + args.bf16 = not float16 + os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' + if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': + args.eval_strategy = 'steps' + if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 + ga_steps = getattr(args, 'gradient_accumulation_steps', None) + if ga_steps is not None and ga_steps > 1: + from transformers import __version__ as transformers_version + if Version(transformers_version) <= Version('4.45.2'): + print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' + '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') + if getattr(args, 'eval_strategy', 'no') != 'no': + eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) + if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size + if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps + fp16_full_eval = getattr(args, 'fp16_full_eval', False) + if type(fp16_full_eval) is not bool: fp16_full_eval = False + bf16_full_eval = getattr(args, 'bf16_full_eval', False) + if type(bf16_full_eval) is not bool: bf16_full_eval = False + if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True + if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False + if force_float32: + args.bf16_full_eval = False + args.fp16_full_eval = False + elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': + args.bf16_full_eval = True + args.fp16_full_eval = False + elif not bf16_full_eval and not fp16_full_eval: + args.bf16_full_eval = args.bf16 + args.fp16_full_eval = args.fp16 + _output_logits = False + if locals().get('compute_metrics', None) is not None: _output_logits = True + if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True + if _output_logits: + os.environ['UNSLOTH_RETURN_LOGITS'] = '1' + if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): + pass + else: + model_max_seq_length = getattr(model, 'max_seq_length', None) + args_max_seq_length = getattr(args, 'max_seq_length', None) + if args_max_seq_length is None and model_max_seq_length is not None: + max_seq_length = model.max_seq_length + if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length + if model is not None and hasattr(model, 'for_training'): + model.for_training() + if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' + if 'processing_class' in locals(): + if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' + if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' + __tokenizer = processing_class if 'processing_class' in locals() else tokenizer + from unsloth_zoo.vision_utils import UnslothVisionDataCollator + if not isinstance(data_collator, UnslothVisionDataCollator): + if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: + data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer, mlm = False, mlm_probability = 0.0) + elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: + data_collator = DataCollatorForSeq2Seq(__tokenizer) + else: + if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False + if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' + if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} + if not isinstance(data_collator, UnslothVisionDataCollator): + if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): + if isinstance(data_collator, DataCollatorForSeq2Seq): + data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) + else: + data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False, mlm_probability = 0.0) + other_metrics = [] + + from unsloth_zoo.logging_utils import PatchRLStatistics + PatchRLStatistics('kto_trainer', other_metrics) + + super().__init__( + model = model, + ref_model = ref_model, + args = args, + train_dataset = train_dataset, + eval_dataset = eval_dataset, + processing_class = processing_class, + data_collator = data_collator, + model_init = model_init, + callbacks = callbacks, + preprocess_logits_for_metrics = preprocess_logits_for_metrics, + peft_config = peft_config, + compute_metrics = compute_metrics, + model_adapter_name = model_adapter_name, + ref_adapter_name = ref_adapter_name,**kwargs) + if hasattr(self, 'neftune_hook_handle'): + self.neftune_hook_handle.remove() + if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle + if getattr(args, 'neftune_noise_alpha', None) is not None: + model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha + pass + if hasattr(self, 'accelerator'): + scaler = self.accelerator.scaler + current_model = model + while hasattr(current_model, 'model'): + current_model.accelerator_scaler = scaler + current_model = current_model.model + current_model.accelerator_scaler = scaler + pass + +pass