omarelsayeed commited on
Commit
bb4ba75
1 Parent(s): 219c59d

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 256,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: omarelsayeed/QA_Search
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:40597
11
+ - loss:LoggingBAS
12
+ widget:
13
+ - source_sentence: 'فوري اليومي : عند إضافة أموال الي فوري اليومي يكون هناك اختيارين
14
+ بين إضافة مبلغ أو اختيار عدد وثائق'
15
+ sentences:
16
+ - انا حولت مبلغ ٢٠٠٠٠ج يوم ٢٠/١٠/٢٠٢٤ ولم تصل الي حسابي فوري وقدمت شكوي ولم يرد
17
+ عليا نهاءيا
18
+ - الرجاء إضافة الحجز لتذاكر القطار .
19
+ - الرجاء إضافة الحجز لتذاكر القطار .
20
+ - source_sentence: تحويل من فودافون كاش الي البطاقه البنكيه
21
+ sentences:
22
+ - شحن رصيد عملات على تطبيق التيك توك
23
+ - توفير الاجهزه لمعارض الموتسكلات والدفع بالتقسيط عن طريق فورى وتغطية مناطق منشأة
24
+ البكارى وكرداسه و ناهيه لعدم توافر مناديب اومشرف. فى المناطق غير متوفر الخدمات
25
+ من فورى بها
26
+ - اضافه حجز القطارات على البرنامج
27
+ - source_sentence: ارجو التواصل معي حيث انكم لا تردون علي رقمي ولا استطيع ايجاد حل
28
+ لمشكلتي 01080179030
29
+ sentences:
30
+ - زياده افراد العمل لدي خدمة العملاء
31
+ - هّلَ يَمًکْنِ تٌحًوٌيَلَ نِقُوٌدٍ مًنِ آلَآنِسِتٌآ بًآيَ بًنِفُسِ رقُمً آلَفُوٌنِ
32
+ لَلَکْآرتٌ آلَآصّفُر بًنِفُسِ رقُمً آلَمًوٌبًآيَلَ
33
+ - هذا الابلكيشن سئ
34
+ - source_sentence: 1- عايز رسايل SMS بكل سحب وايداع 2- عايز اقدر احول إلى محفظة مثل
35
+ فودافون كاش من التطبيق علطول
36
+ sentences:
37
+ - تحويل الفلوس للمحافظ الالكترونيه والبطاقات البنكيه الاخري لتحسين جودة الخدمه
38
+ - هل من الممكن وضع الوضع المظلم في البرنامج
39
+ - تحويل المبلغ من الادخار الي حسابي الشخصي في البنك مباشرة
40
+ - source_sentence: يوجد مشكله من شهر ولم يتم الانتهاء من الحل حتي الان عند عمل تحويل
41
+ من كارت الائتمان يتم رفض العمليه.....
42
+ sentences:
43
+ - تحويل الأموال للحسابات البنكية
44
+ - في خدمه غير متوجده علي الابلكيشان ارجو المساعده واظافه الخدمه 77178 تحصيلات العربي
45
+ - ممكن اقدم على طلب تقسيط ليه طلب اترفض في اول مرا
46
+ ---
47
+
48
+ # SentenceTransformer based on omarelsayeed/QA_Search
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [omarelsayeed/QA_Search](https://huggingface.co/omarelsayeed/QA_Search). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [omarelsayeed/QA_Search](https://huggingface.co/omarelsayeed/QA_Search) <!-- at revision 1714c8f70fa4550f723c8345fc222bdd06b8e137 -->
57
+ - **Maximum Sequence Length:** 30 tokens
58
+ - **Output Dimensionality:** 256 dimensions
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 30, 'do_lower_case': False}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("sentence_transformers_model_id")
95
+ # Run inference
96
+ sentences = [
97
+ 'يوجد مشكله من شهر ولم يتم الانتهاء من الحل حتي الان عند عمل تحويل من كارت الائتمان يتم رفض العمليه.....',
98
+ 'في خدمه غير متوجده علي الابلكيشان ارجو المساعده واظافه الخدمه 77178 تحصيلات العربي',
99
+ 'ممكن اقدم على طلب تقسيط ليه طلب اترفض في اول مرا',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 256]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### Unnamed Dataset
152
+
153
+
154
+ * Size: 40,597 training samples
155
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
156
+ * Approximate statistics based on the first 1000 samples:
157
+ | | sentence_0 | sentence_1 | label |
158
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
159
+ | type | string | string | float |
160
+ | details | <ul><li>min: 3 tokens</li><li>mean: 13.93 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.83 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.48</li><li>max: 1.0</li></ul> |
161
+ * Samples:
162
+ | sentence_0 | sentence_1 | label |
163
+ |:--------------------------------------------|:-------------------------------------------------------------------|:------------------|
164
+ | <code>تحويل للمحافظ الإلكترونية</code> | <code>تحويل إلي المحفظة الإلكترونية مثل فودافون كاش و خلافه</code> | <code>1.0</code> |
165
+ | <code>تحويل نقود على فودافون كاش</code> | <code>محفظه الموبايل</code> | <code>-1.0</code> |
166
+ | <code>تحويل علي المحافظه الالكترونيه</code> | <code>تحويل الاموال من فوري لمحافظ فودافون كاش رجاء</code> | <code>1.0</code> |
167
+ * Loss: <code>__main__.LoggingBAS</code> with these parameters:
168
+ ```json
169
+ {
170
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
171
+ }
172
+ ```
173
+
174
+ ### Training Hyperparameters
175
+ #### Non-Default Hyperparameters
176
+
177
+ - `per_device_train_batch_size`: 16
178
+ - `per_device_eval_batch_size`: 16
179
+ - `num_train_epochs`: 2
180
+ - `multi_dataset_batch_sampler`: round_robin
181
+
182
+ #### All Hyperparameters
183
+ <details><summary>Click to expand</summary>
184
+
185
+ - `overwrite_output_dir`: False
186
+ - `do_predict`: False
187
+ - `eval_strategy`: no
188
+ - `prediction_loss_only`: True
189
+ - `per_device_train_batch_size`: 16
190
+ - `per_device_eval_batch_size`: 16
191
+ - `per_gpu_train_batch_size`: None
192
+ - `per_gpu_eval_batch_size`: None
193
+ - `gradient_accumulation_steps`: 1
194
+ - `eval_accumulation_steps`: None
195
+ - `torch_empty_cache_steps`: None
196
+ - `learning_rate`: 5e-05
197
+ - `weight_decay`: 0.0
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 1
202
+ - `num_train_epochs`: 2
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.0
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: False
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: False
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: None
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: False
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `eval_do_concat_batches`: True
273
+ - `fp16_backend`: auto
274
+ - `push_to_hub_model_id`: None
275
+ - `push_to_hub_organization`: None
276
+ - `mp_parameters`:
277
+ - `auto_find_batch_size`: False
278
+ - `full_determinism`: False
279
+ - `torchdynamo`: None
280
+ - `ray_scope`: last
281
+ - `ddp_timeout`: 1800
282
+ - `torch_compile`: False
283
+ - `torch_compile_backend`: None
284
+ - `torch_compile_mode`: None
285
+ - `dispatch_batches`: None
286
+ - `split_batches`: None
287
+ - `include_tokens_per_second`: False
288
+ - `include_num_input_tokens_seen`: False
289
+ - `neftune_noise_alpha`: None
290
+ - `optim_target_modules`: None
291
+ - `batch_eval_metrics`: False
292
+ - `eval_on_start`: False
293
+ - `use_liger_kernel`: False
294
+ - `eval_use_gather_object`: False
295
+ - `prompts`: None
296
+ - `batch_sampler`: batch_sampler
297
+ - `multi_dataset_batch_sampler`: round_robin
298
+
299
+ </details>
300
+
301
+ ### Training Logs
302
+ | Epoch | Step | Training Loss |
303
+ |:------:|:----:|:-------------:|
304
+ | 0.1970 | 500 | 1.0946 |
305
+ | 0.3940 | 1000 | 0.894 |
306
+ | 0.5910 | 1500 | 0.8248 |
307
+ | 0.7880 | 2000 | 0.8007 |
308
+ | 0.9850 | 2500 | 0.7938 |
309
+ | 1.1820 | 3000 | 0.7666 |
310
+ | 1.3790 | 3500 | 0.7409 |
311
+ | 1.5760 | 4000 | 0.7377 |
312
+ | 1.7730 | 4500 | 0.7262 |
313
+ | 1.9701 | 5000 | 0.7302 |
314
+
315
+
316
+ ### Framework Versions
317
+ - Python: 3.10.14
318
+ - Sentence Transformers: 3.3.1
319
+ - Transformers: 4.45.1
320
+ - PyTorch: 2.4.0
321
+ - Accelerate: 0.34.2
322
+ - Datasets: 3.0.1
323
+ - Tokenizers: 0.20.0
324
+
325
+ ## Citation
326
+
327
+ ### BibTeX
328
+
329
+ #### Sentence Transformers
330
+ ```bibtex
331
+ @inproceedings{reimers-2019-sentence-bert,
332
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
333
+ author = "Reimers, Nils and Gurevych, Iryna",
334
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
335
+ month = "11",
336
+ year = "2019",
337
+ publisher = "Association for Computational Linguistics",
338
+ url = "https://arxiv.org/abs/1908.10084",
339
+ }
340
+ ```
341
+
342
+ <!--
343
+ ## Glossary
344
+
345
+ *Clearly define terms in order to be accessible across audiences.*
346
+ -->
347
+
348
+ <!--
349
+ ## Model Card Authors
350
+
351
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
352
+ -->
353
+
354
+ <!--
355
+ ## Model Card Contact
356
+
357
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
358
+ -->
config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "omarelsayeed/QA_Search",
3
+ "_num_labels": 2,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 256,
13
+ "id2label": {
14
+ "0": "\u0627\u0645\u0627\u0643\u0646 \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a",
15
+ "1": "\u0645\u0648\u0627\u0639\u064a\u062f \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a",
16
+ "2": "\u0648\u0638\u064a\u0641\u0629",
17
+ "3": "\u0645\u062e\u0627\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0631\u0648\u0631",
18
+ "4": "\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0631\u062e\u0635\u0629",
19
+ "5": "\u062a\u062c\u062f\u064a\u062f \u0627\u0644\u0631\u062e\u0635\u0629",
20
+ "6": "\u0627\u0636\u0627\u0641\u0647 \u0643\u0627\u0631\u062a",
21
+ "7": "\u062d\u0630\u0641 \u0643\u0627\u0631\u062a",
22
+ "8": "\u062a\u062e\u0637\u0649 \u062d\u062f \u0645\u0633\u0645\u0648\u062d",
23
+ "9": "\u0628\u0637\u0627\u0642\u0647 \u0645\u0639\u0644\u0642\u0629/\u0627\u0644\u0628\u0637\u0627\u0642\u0629 \u0645\u062d\u0638\u0648\u0631\u0629",
24
+ "10": "\u062d\u0633\u0627\u0628 \u062c\u062f\u064a\u062f",
25
+ "11": "\u062a\u0633\u062c\u064a\u0644 \u062f\u062e\u0648\u0644 \u062d\u0633\u0627\u0628",
26
+ "12": "\u062d\u0630\u0641 \u062d\u0633\u0627\u0628",
27
+ "13": "\u062d\u0633\u0627\u0628 \u0645\u062d\u0638\u0648\u0631",
28
+ "14": "\u062a\u062d\u062f\u064a\u062b \u062d\u0633\u0627\u0628",
29
+ "15": "\u0637\u0628\u0627\u0639\u0647 \u0641\u0627\u062a\u0648\u0631\u0629",
30
+ "16": "\u0627\u0633\u062a\u0641\u0633\u0627\u0631 \u0639\u0646 \u062d\u0627\u0644\u0629 \u0627\u0644\u0639\u0645\u0644\u064a\u0629/\u0627\u0644\u0639\u0645\u0644\u064a\u0629 \u0627\u062a\u062e\u0635\u0645\u062a",
31
+ "17": "\u0634\u0631\u0627\u0621 \u0645\u0627\u0643\u064a\u0646\u0647",
32
+ "18": "\u062a\u062d\u0648\u064a\u0644 \u0645\u0628\u0644\u063a \u0645\u0627\u0644\u064a",
33
+ "19": "\u062e\u062f\u0645\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u062a \u0627\u0644\u0645\u0633\u0644\u062d\u0629",
34
+ "20": "\u0634\u062d\u0646 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644",
35
+ "21": "\u0641\u0627\u062a\u0648\u0631\u0629 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644",
36
+ "22": "\u0645\u064a\u0627\u0647",
37
+ "23": "\u063a\u0627\u0632",
38
+ "24": "\u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621",
39
+ "25": "\u0641\u0648\u0631\u064a \u0628\u0627\u064a",
40
+ "26": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621",
41
+ "27": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0645\u064a\u0627\u0647",
42
+ "28": "\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u0627\u0644\u062a\u0637\u0628\u064a\u0642",
43
+ "29": "\u0627\u0633\u062a\u0631\u0627\u062c\u0639 \u0642\u064a\u0645\u0629 \u0645\u0627\u0644\u064a\u0629",
44
+ "30": "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u062f\u0648\u0644\u064a\u0629",
45
+ "31": "\u062a\u0630\u0627\u0643\u0631",
46
+ "32": "\u0627\u0644\u062a\u0623\u0645\u064a\u0646",
47
+ "33": "\u0627\u0644\u0646\u0642\u0627\u0628\u0627\u062a",
48
+ "34": "\u062a\u0639\u0644\u064a\u0645",
49
+ "35": "\u062e\u062f\u0645\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u0621",
50
+ "36": "\u0627\u0644\u0639\u0627\u0628 \u0627\u0648\u0646\u0644\u0627\u064a\u0646",
51
+ "37": "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u0645\u0627\u0644\u064a\u0629 \u0648 \u0628\u0646\u0648\u0643",
52
+ "38": "\u062a\u0645\u0648\u064a\u0644 \u0645\u062a\u0646\u0627\u0647\u064a \u0627\u0644\u0635\u063a\u0631",
53
+ "39": "\u0645\u062f\u0641\u0648\u0639\u0627\u062a \u0627\u0648\u0646\u0644\u0627\u064a\u0646",
54
+ "40": "\u062a\u0628\u0631\u0639\u0627\u062a",
55
+ "41": "\u0627\u0634\u062a\u0631\u0627\u0643 \u0646\u0648\u0627\u062f\u064a",
56
+ "42": "Yellow Card",
57
+ "43": "\u062c\u0648\u0627\u0626\u0632",
58
+ "44": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u063a\u0627\u0632",
59
+ "45": "\u0627\u0644\u0627\u0646\u062a\u0631\u0646\u062a \u0627\u0644\u0645\u0646\u0632\u0644\u064a",
60
+ "46": "\u0627\u0644\u062a\u0644\u064a\u0641\u0648\u0646 \u0627\u0644\u0623\u0631\u0636\u064a",
61
+ "47": "\u0641\u0648\u0631\u064a \u062a\u0642\u0633\u064a\u0637",
62
+ "48": "\u0641\u0648\u0631\u064a \u064a\u0648\u0645\u064a",
63
+ "49": "\u062a\u0642\u062f\u064a\u0645 \u0634\u0643\u0648\u064a",
64
+ "50": "\u0633\u0643\u0646 \u0648\u0639\u0642\u0627\u0631\u0627\u062a",
65
+ "51": "\u0641\u0648\u0631\u064a \u0644\u0644\u0648\u0633\u0627\u0637\u0629 \u0627\u0644\u062a\u0623\u0645\u064a\u0646\u064a\u0629",
66
+ "52": "\u062a\u0623\u0645\u064a\u0646 \u0627\u062c\u062a\u0645\u0627\u0639\u064a",
67
+ "53": "\u0627\u064a\u062f\u0627\u0639",
68
+ "54": "Consumer Finance",
69
+ "55": "\u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0648\u062d\u062f\u0627\u062a \u0627\u0644\u0639\u0642\u0627\u0631\u064a\u0629",
70
+ "56": "\u0633\u062d\u0628",
71
+ "57": "\u0634\u0631\u0627\u0621 \u0645\u0646 \u0645\u062d\u0644"
72
+ },
73
+ "initializer_range": 0.02,
74
+ "intermediate_size": 1024,
75
+ "label2id": {
76
+ "Consumer Finance": 54,
77
+ "Yellow Card": 42,
78
+ "\u0627\u0633\u062a\u0631\u0627\u062c\u0639 \u0642\u064a\u0645\u0629 \u0645\u0627\u0644\u064a\u0629": 29,
79
+ "\u0627\u0633\u062a\u0641\u0633\u0627\u0631 \u0639\u0646 \u062d\u0627\u0644\u0629 \u0627\u0644\u0639\u0645\u0644\u064a\u0629/\u0627\u0644\u0639\u0645\u0644\u064a\u0629 \u0627\u062a\u062e\u0635\u0645\u062a": 16,
80
+ "\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0631\u062e\u0635\u0629": 4,
81
+ "\u0627\u0634\u062a\u0631\u0627\u0643 \u0646\u0648\u0627\u062f\u064a": 41,
82
+ "\u0627\u0636\u0627\u0641\u0647 \u0643\u0627\u0631\u062a": 6,
83
+ "\u0627\u0644\u0627\u0646\u062a\u0631\u0646\u062a \u0627\u0644\u0645\u0646\u0632\u0644\u064a": 45,
84
+ "\u0627\u0644\u062a\u0623\u0645\u064a\u0646": 32,
85
+ "\u0627\u0644\u062a\u0644\u064a\u0641\u0648\u0646 \u0627\u0644\u0623\u0631\u0636\u064a": 46,
86
+ "\u0627\u0644\u0639\u0627\u0628 \u0627\u0648\u0646\u0644\u0627\u064a\u0646": 36,
87
+ "\u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621": 24,
88
+ "\u0627\u0644\u0646\u0642\u0627\u0628\u0627\u062a": 33,
89
+ "\u0627\u0645\u0627\u0643\u0646 \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a": 0,
90
+ "\u0627\u064a\u062f\u0627\u0639": 53,
91
+ "\u0628\u0637\u0627\u0642\u0647 \u0645\u0639\u0644\u0642\u0629/\u0627\u0644\u0628\u0637\u0627\u0642\u0629 \u0645\u062d\u0638\u0648\u0631\u0629": 9,
92
+ "\u062a\u0623\u0645\u064a\u0646 \u0627\u062c\u062a\u0645\u0627\u0639\u064a": 52,
93
+ "\u062a\u0628\u0631\u0639\u0627\u062a": 40,
94
+ "\u062a\u062c\u062f\u064a\u062f \u0627\u0644\u0631\u062e\u0635\u0629": 5,
95
+ "\u062a\u062d\u062f\u064a\u062b \u062d\u0633\u0627\u0628": 14,
96
+ "\u062a\u062d\u0648\u064a\u0644 \u0645\u0628\u0644\u063a \u0645\u0627\u0644\u064a": 18,
97
+ "\u062a\u062e\u0637\u0649 \u062d\u062f \u0645\u0633\u0645\u0648\u062d": 8,
98
+ "\u062a\u0630\u0627\u0643\u0631": 31,
99
+ "\u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0648\u062d\u062f\u0627\u062a \u0627\u0644\u0639\u0642\u0627\u0631\u064a\u0629": 55,
100
+ "\u062a\u0633\u062c\u064a\u0644 \u062f\u062e\u0648\u0644 \u062d\u0633\u0627\u0628": 11,
101
+ "\u062a\u0639\u0644\u064a\u0645": 34,
102
+ "\u062a\u0642\u062f\u064a\u0645 \u0634\u0643\u0648\u064a": 49,
103
+ "\u062a\u0645\u0648\u064a\u0644 \u0645\u062a\u0646\u0627\u0647\u064a \u0627\u0644\u0635\u063a\u0631": 38,
104
+ "\u062c\u0648\u0627\u0626\u0632": 43,
105
+ "\u062d\u0630\u0641 \u062d\u0633\u0627\u0628": 12,
106
+ "\u062d\u0630\u0641 \u0643\u0627\u0631\u062a": 7,
107
+ "\u062d\u0633\u0627\u0628 \u062c\u062f\u064a\u062f": 10,
108
+ "\u062d\u0633\u0627\u0628 \u0645\u062d\u0638\u0648\u0631": 13,
109
+ "\u062e\u062f\u0645\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u062a \u0627\u0644\u0645\u0633\u0644\u062d\u0629": 19,
110
+ "\u062e\u062f\u0645\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u0621": 35,
111
+ "\u0633\u062d\u0628": 56,
112
+ "\u0633\u0643\u0646 \u0648\u0639\u0642\u0627\u0631\u0627\u062a": 50,
113
+ "\u0634\u062d\u0646 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644": 20,
114
+ "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u063a\u0627\u0632": 44,
115
+ "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621": 26,
116
+ "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0645\u064a\u0627\u0647": 27,
117
+ "\u0634\u0631\u0627\u0621 \u0645\u0627\u0643\u064a\u0646\u0647": 17,
118
+ "\u0634\u0631\u0627\u0621 \u0645\u0646 \u0645\u062d\u0644": 57,
119
+ "\u0637\u0628\u0627\u0639\u0647 \u0641\u0627\u062a\u0648\u0631\u0629": 15,
120
+ "\u063a\u0627\u0632": 23,
121
+ "\u0641\u0627\u062a\u0648\u0631\u0629 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644": 21,
122
+ "\u0641\u0648\u0631\u064a \u0628\u0627\u064a": 25,
123
+ "\u0641\u0648\u0631\u064a \u062a\u0642\u0633\u064a\u0637": 47,
124
+ "\u0641\u0648\u0631\u064a \u0644\u0644\u0648\u0633\u0627\u0637\u0629 \u0627\u0644\u062a\u0623\u0645\u064a\u0646\u064a\u0629": 51,
125
+ "\u0641\u0648\u0631\u064a \u064a\u0648\u0645\u064a": 48,
126
+ "\u0645\u062e\u0627\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0631\u0648\u0631": 3,
127
+ "\u0645\u062f\u0641\u0648\u0639\u0627\u062a \u0627\u0648\u0646\u0644\u0627\u064a\u0646": 39,
128
+ "\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u0627\u0644\u062a\u0637\u0628\u064a\u0642": 28,
129
+ "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u062f\u0648\u0644\u064a\u0629": 30,
130
+ "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u0645\u0627\u0644\u064a\u0629 \u0648 \u0628\u0646\u0648\u0643": 37,
131
+ "\u0645\u0648\u0627\u0639\u064a\u062f \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a": 1,
132
+ "\u0645\u064a\u0627\u0647": 22,
133
+ "\u0648\u0638\u064a\u0641\u0629": 2
134
+ },
135
+ "layer_norm_eps": 1e-12,
136
+ "max_position_embeddings": 512,
137
+ "model_type": "bert",
138
+ "num_attention_heads": 4,
139
+ "num_hidden_layers": 4,
140
+ "output_past": true,
141
+ "pad_token_id": 0,
142
+ "position_embedding_type": "absolute",
143
+ "problem_type": "single_label_classification",
144
+ "torch_dtype": "float32",
145
+ "transformers_version": "4.45.1",
146
+ "type_vocab_size": 2,
147
+ "use_cache": true,
148
+ "vocab_size": 32000
149
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d31eea292c5946c145366a915555ac435b1086051a30c1fb6e3496de18f63d3c
3
+ size 46203496
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 30,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 150,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff