shawgpt-ft
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00044354042969560833
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 13
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5327 | 0.9231 | 3 | 3.6762 |
3.5046 | 1.8462 | 6 | 2.7390 |
2.6033 | 2.7692 | 9 | 2.1646 |
1.4597 | 4.0 | 13 | 1.5947 |
1.5213 | 4.9231 | 16 | 1.4016 |
1.3227 | 5.8462 | 19 | 1.3490 |
1.2306 | 6.7692 | 22 | 1.3212 |
0.9057 | 8.0 | 26 | 1.3043 |
1.1605 | 8.9231 | 29 | 1.3039 |
1.1068 | 9.8462 | 32 | 1.3048 |
1.1051 | 10.7692 | 35 | 1.3068 |
0.7868 | 12.0 | 39 | 1.3061 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for oliverhoffmann/shawgpt-ft
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ