--- language: - nl tags: - punctuation prediction - punctuation datasets: wmt/europarl license: mit widget: - text: "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" example_title: "Euro Parl" metrics: - f1 --- This model predicts the punctuation of Dutch texts. We developed it to restore the punctuation of transcribed spoken language. This model was trained on the [Europarl Dataset](https://huggingface.co/datasets/wmt/europarl). The model restores the following punctuation markers: **"." "," "?" "-" ":"** ## Sample Code We provide a simple python package that allows you to process text of any length. ## Install To get started install the package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/): ```bash pip install deepmultilingualpunctuation ``` ### Restore Punctuation ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-dutch-punctuation-prediction") text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" result = model.restore_punctuation(text) print(result) ``` **output** > hervatting van de zitting ik verklaar de zitting van het europees parlement, die op vrijdag 17 december werd onderbroken, te zijn hervat. ### Predict Labels ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-dutch-punctuation-prediction") text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" clean_text = model.preprocess(text) labled_words = model.predict(clean_text) print(labled_words) ``` **output** > [['hervatting', '0', 0.9999777], ['van', '0', 0.99998415], ['de', '0', 0.999987], ['zitting', '0', 0.9992779], ['ik', '0', 0.9999889], ['verklaar', '0', 0.99998295], ['de', '0', 0.99998856], ['zitting', '0', 0.9999895], ['van', '0', 0.9999902], ['het', '0', 0.999992], ['europees', '0', 0.9999924], ['parlement', ',', 0.9915131], ['die', '0', 0.99997807], ['op', '0', 0.9999882], ['vrijdag', '0', 0.9999746], ['17', '0', 0.99998784], ['december', '0', 0.99997866], ['werd', '0', 0.9999888], ['onderbroken', ',', 0.99287957], ['te', '0', 0.9999864], ['zijn', '0', 0.99998176], ['hervat', '.', 0.99762934]] ## Results The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores: | Label | Dutch | | ------------- | -------- | | 0 | 0.993588 | | . | 0.961450 | | ? | 0.848506 | | , | 0.810883 | | : | 0.655212 | | - | 0.461591 | | macro average | 0.788538 | | micro average | 0.983492 | ## How to cite us ``` @misc{https://doi.org/10.48550/arxiv.2301.03319, doi = {10.48550/ARXIV.2301.03319}, url = {https://arxiv.org/abs/2301.03319}, author = {Vandeghinste, Vincent and Guhr, Oliver}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7}, title = {FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers}, publisher = {arXiv}, year = {2023}, copyright = {Creative Commons Attribution Share Alike 4.0 International} } ```