{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c2a17ac7440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722358789773577004, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABNijwOV7S8g6ijuwrsCD19SSA+BhDRvQAAgD8AAIA/Zlr4Ox8F5rmHhCe8M5L0PLDIC7sw/yS8AACAPwAAgD8aa4k9H2XRubqELrdxWNmy9Yt7O9L3TTYAAIA/AACAPwCakjwkPpw++rsfPWcUwL67xdk7qryyPQAAAAAAAAAAzZCmu1Jmvj/z1W29/s9hPmSmOjxhpEA9AAAAAAAAAACaAOu8yGMdP0ysBz4iyaW+rwucvPOPJD4AAAAAAAAAAABUbjw2zgG8Mi7ovQFct715G/S7mKliPgAAgD8AAIA/ZmSEPRT3zz6VOFC+Vi2gvh+BiL3WiCS9AAAAAAAAAADmgww9PJAYPjvfhT1Pc5m+Z9q5PfKxPDwAAAAAAAAAAGYKvDzDSXm6cFMmtjP2CbDYqKq6xyc/NQAAgD8AAIA/c0+Hvt48mD++NS2+z6jxvkOP/r5VUI49AAAAAAAAAABNmVY93EkQPtrkKL7mYpu+p+/nvdkCiT0AAAAAAAAAAHpSF77b7gc/Hge4PgtU4r6soQy91j29PgAAAAAAAAAARoM9PnNyfj+jwpC8/9TNvsfpdj7Cszu+AAAAAAAAAABAzuI97ZqRPnIAa76O3MC+Q/XYvS6UDb0AAAAAAAAAAMAb0L0v3lo/i2favB723L7qNEW+WnKDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLCb961LJ2MAWyUS/2MAXSUR0Cx++2BBiTddX2UKGgGR0BxtkmCyyD7aAdL42gIR0Cx/AnPNVzZdX2UKGgGR0BynOUzKs+3aAdNCQFoCEdAsfwUMF2V3XV9lChoBkdAc0ows5GSZGgHS95oCEdAsfw5fJFLFnV9lChoBkdAcQ+CCz1K5GgHTRoBaAhHQLH8OQqI7/51fZQoaAZHQHIzVEiMYMxoB0v1aAhHQLH8aK02LpB1fZQoaAZHQHJnov8IiTtoB0vwaAhHQLH8d5O8Cgd1fZQoaAZHQHGbQazeGfxoB0veaAhHQLH8lDSw4bV1fZQoaAZHQHHr3kPtlZpoB0voaAhHQLH8lEoOQQt1fZQoaAZHQG9XPBJqZc9oB00JAWgIR0Cx/JePvKEGdX2UKGgGR0BzTrhWHUMHaAdNNgFoCEdAsfyxuuRs/XV9lChoBkdAcFrpN9H+ZWgHS+loCEdAsfy1hF3IMnV9lChoBkdAby8fVZs9CGgHS+ZoCEdAsfzZsrNGE3V9lChoBkdAcq+YhdMTOGgHTRoBaAhHQLH84D7655J1fZQoaAZHQHBno5xR2r5oB0vsaAhHQLH9EeyRjjJ1fZQoaAZHQHIcD5XU6PtoB0vjaAhHQLH9P9nscAB1fZQoaAZHQHNo4OpbUw1oB0vsaAhHQLH9dPQOWjZ1fZQoaAZHQFEOIi1RceNoB0uYaAhHQLH9el+EytV1fZQoaAZHQHFELD63y7RoB00GAWgIR0Cx/YGys0YTdX2UKGgGR0ByNjKW9lEraAdL52gIR0Cx/aHlr/KhdX2UKGgGR0BwuAsrd30PaAdNCwFoCEdAsf2zs7dSEXV9lChoBkdAcBCAsTWXkmgHS/doCEdAsf27GyX2NHV9lChoBkdAUmTU3GXHBGgHS6RoCEdAsf3aBVdX1nV9lChoBkdAcgZfAKv3amgHS/xoCEdAsf3sRYigTXV9lChoBkdAcaKER8MNMGgHS/NoCEdAsf3sbT+efHV9lChoBkdAc0R8xbjcVWgHS+FoCEdAsf4Gt6ol2XV9lChoBkdAca5hl18stmgHS/9oCEdAsf4XpD/lyXV9lChoBkdAbs2/tY0VJ2gHS+JoCEdAsf456rvLHXV9lChoBkdAcPY0bLlmvmgHTQUBaAhHQLH+Po4dZJV1fZQoaAZHQHJDohdMTOBoB0vmaAhHQLH+c5gw4851fZQoaAZHQE4GNJe3QUpoB0upaAhHQLH+ed8zAN51fZQoaAZHQHJfnRXwLE1oB01PAWgIR0Cx/omhufmLdX2UKGgGR0BwTjMFEAo5aAdL/mgIR0CyAwvQa72+dX2UKGgGR0BwX9Q1rIo3aAdNAgFoCEdAsgNUsSTQmnV9lChoBkdAb3I5oXbdrWgHTQgBaAhHQLIDXT6i0v51fZQoaAZHQHKb7pqynk1oB0vraAhHQLIDfCTEBKd1fZQoaAZHQHLvDUAksz5oB0v+aAhHQLIDgrHU+cJ1fZQoaAZHQHDzbJfYzzpoB00NAWgIR0CyA78sDnvEdX2UKGgGR0Bv7QcJdB0IaAdL82gIR0CyA8MXBP9DdX2UKGgGR0ByxG9Ba9saaAdL7GgIR0CyA8zvNNahdX2UKGgGR0Bx2tv73wkPaAdNDAFoCEdAsgQNcNYr8XV9lChoBkdAc55EOAiFCmgHTQQBaAhHQLIEI7GvOhV1fZQoaAZHQHAF8s6JZW9oB0vlaAhHQLIEMnF5v991fZQoaAZHQHHhKOo5xR5oB0v5aAhHQLIEVH6uW8h1fZQoaAZHQFPjR3NcGC9oB0vPaAhHQLIEbicG1QZ1fZQoaAZHQHEHnqZ+hGpoB00fAWgIR0CyBHLl7tzCdX2UKGgGR0BxE8MH8jzJaAdL52gIR0CyBICo86mwdX2UKGgGR0BxyI7yQPqcaAdL6mgIR0CyBI3uiN83dX2UKGgGR0BCBW3KB/ZvaAdLlGgIR0CyBJIOH310dX2UKGgGR0BwSFWo3rD7aAdL6WgIR0CyBO7L6k6+dX2UKGgGR0BwSV3qzJIUaAdL2GgIR0CyBRNTUAktdX2UKGgGR0Bvl1beMyaeaAdLzGgIR0CyBV1UVBUrdX2UKGgGR0By0VY+0PYnaAdL7WgIR0CyBWK2a2F4dX2UKGgGR0Bx4L4QBgeBaAdL3WgIR0CyBYyExqO+dX2UKGgGR0BwKOxqwhW6aAdL5GgIR0CyBY3xaxHHdX2UKGgGR0BzT8YKpkwwaAdNGgFoCEdAsgXIHGCI13V9lChoBkdAc9IQC0WuYGgHS+NoCEdAsgYKXWvr4XV9lChoBkdAcBDijL0SRWgHS/hoCEdAsgYf420iQnV9lChoBkdAc8sPOIInjWgHS9hoCEdAsgYnMnqmj3V9lChoBkdAbw0EA5q/NGgHS+9oCEdAsgY3mnwXqXV9lChoBkdAc3RJ2t+1B2gHS+hoCEdAsgZCYtxuK3V9lChoBkdAcd57FsHjZWgHS/BoCEdAsgZoLhJiAnV9lChoBkdAcQdDB/I8yWgHS/9oCEdAsgZ8lsxfwHV9lChoBkdAcetXqZ+hG2gHTQ0BaAhHQLIGh0iyIHl1fZQoaAZHQHEwFOwgTytoB0vaaAhHQLIGjk+HJtB1fZQoaAZHQHIZe85CF9NoB01OAWgIR0CyBpI8U21ldX2UKGgGR0BOmm6f8MuwaAdLqWgIR0CyBrIa5wwTdX2UKGgGR0BxA31SOzY3aAdL0WgIR0CyBs6H9FWodX2UKGgGR0BxOw2606YFaAdNBAFoCEdAsgbj5JsfrHV9lChoBkdAcwVMuOCGvmgHS+1oCEdAsgb0afjCHnV9lChoBkdAci1Y/3WWhWgHS99oCEdAsgb/smfGuXV9lChoBkdAcGYzyjHn2mgHS/ZoCEdAsgdEdxQzlHV9lChoBkdAcBoQJ5VwP2gHS9toCEdAsgdG26TW5HV9lChoBkdAcQd7r9l2/2gHS9hoCEdAsgd4o5PuX3V9lChoBkdAcOyDaXa8H2gHS+NoCEdAsgd+nUDuB3V9lChoBkdAcP97UXpGF2gHS/JoCEdAsgeErnTy8XV9lChoBkdAcVCOrQw9JWgHS/5oCEdAsgePopx3mnV9lChoBkdAbhiVAzHjqGgHS9xoCEdAsgejSnccl3V9lChoBkdAcmAqQRwqAmgHS9poCEdAsgfKJfpljHV9lChoBkdAcfUuNgjQiWgHS+xoCEdAsgfPyOJcgXV9lChoBkdAcLi5oXbdrWgHS+ZoCEdAsgfYmhM8HXV9lChoBkdAcWc2ovSMLmgHS/RoCEdAsgfmQdS2pnV9lChoBkdAbpFWYnfEXWgHS/hoCEdAsggWLxZuAXV9lChoBkdAcSXQk5ZKWmgHS+FoCEdAsggkumJm/XV9lChoBkdAcUh3qzJIUmgHS/BoCEdAsggmz3RG+nV9lChoBkdAU8rzyz5XVGgHS6JoCEdAsggxSvTw2HV9lChoBkdAcsa2CuloDmgHTQQBaAhHQLIIYocJdB11fZQoaAZHQHJt7Bj4HopoB0v+aAhHQLIIZit7rs11fZQoaAZHQHIPyWiUPhBoB0vfaAhHQLIIgafzz3B1fZQoaAZHQHH/0dFOO81oB0vfaAhHQLIItNHYpUh1fZQoaAZHQHJlzHbRF7VoB0viaAhHQLIIxSro4dZ1fZQoaAZHQDgnMjeKsMloB0t/aAhHQLII2XEqDsd1fZQoaAZHQHEHS+De0oloB0vuaAhHQLII47aZhKF1fZQoaAZHQHB5rTc6/7BoB0v6aAhHQLII5LQ5WBB1fZQoaAZHQHMKSwjdHlRoB0v/aAhHQLIJD6guh9N1fZQoaAZHQHFPbYoRZlpoB0vraAhHQLIJGCg9Net1fZQoaAZHQHDmNz8xbjdoB0vpaAhHQLIJMJlar3l1fZQoaAZHQHOqkNvwVj9oB0vzaAhHQLIJMhgE2YR1fZQoaAZHQHDjoOtnwodoB00DAWgIR0CyCUA/cFhYdX2UKGgGR0BwN7srupjuaAdL/mgIR0CyCYA9FF2FdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}