{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "333ede5f", "metadata": {}, "outputs": [], "source": [ "%cd \"../../MYSMP\"" ] }, { "cell_type": "code", "execution_count": null, "id": "84d4c945", "metadata": {}, "outputs": [], "source": [ "# %pip install -r requirements.txt" ] }, { "cell_type": "code", "execution_count": null, "id": "7b088ef9", "metadata": {}, "outputs": [], "source": [ "%cd \"../MYSMP/semantic-segmentation\"" ] }, { "cell_type": "code", "execution_count": null, "id": "99937292", "metadata": {}, "outputs": [], "source": [ "from SemanticModel.model_core import SegmentationModel\n", "from SemanticModel.training import ModelTrainer" ] }, { "cell_type": "code", "execution_count": null, "id": "ab69a291", "metadata": {}, "outputs": [], "source": [ "# initialization loss function\n", "model = SegmentationModel(\n", " classes=['bg', 'cacao', 'matarraton', 'abarco'],\n", " architecture='unet',\n", " encoder='timm-regnety_120',\n", " weights='imagenet',\n", " loss='dice' # Try 'dice' or 'tversky' instead of default\n", ")\n", "\n", "# training parameters\n", "trainer = ModelTrainer(\n", " model_config=model,\n", " root_dir='../data',\n", " epochs=100,\n", " train_size=1024,\n", " batch_size=4,\n", " learning_rate=1e-3, # Increased learning rate\n", " step_count=3, # More learning rate adjustments\n", " decay_factor=0.5 # Stronger decay\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "38fc7c6f", "metadata": {}, "outputs": [], "source": [ "trained_model, metrics = trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "id": "a053c2ae", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "AgLab - Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }