from rouge import Rouge import re from collections import Counter import json import jieba import string from pathlib import Path from prompt import ( gpt4_templates, kimi_templates, claude2_templates, yarn_mistral_templates, ) DATA_NAME_TO_PATH = { # Retrieval tasks "passkey": "passkey.jsonl", "number_string": "number_string.jsonl", "kv_retrieval": "kv_retrieval.jsonl", # Book tasks "longbook_sum_eng": "longbook_sum_eng.jsonl", "longbook_choice_eng": "longbook_choice_eng.jsonl", "longbook_qa_eng": "longbook_qa_eng.jsonl", "longbook_qa_chn": "longbook_qa_chn.jsonl", # "book_qa_eng": "longbook_eng/longbook_qa_eng.jsonl", "longdialogue_qa_eng": "longdialogue_qa_eng.jsonl", # Math tasks "math_find": "math_find.jsonl", "math_calc": "math_calc.jsonl", # Code tasks "code_run": "code_run.jsonl", "code_debug": "code_debug.jsonl", } DATA_NAME_TO_MAX_NEW_TOKENS = { "passkey": 6, "number_string": 12, "kv_retrieval": 50, "longbook_sum_eng": 1200, "longbook_choice_eng": 40, "longbook_qa_eng": 40, "longbook_qa_chn": 40, "longdialogue_qa_eng": 40, "math_find": 3, "math_calc": 30000, "code_run": 5, "code_debug": 5, } MODEL_TO_PROMPT_TEMPLATE = { "gpt4": gpt4_templates, "claude2": claude2_templates, "kimi": kimi_templates, "yarn-mistral": yarn_mistral_templates, "yi-6b-200k": yarn_mistral_templates, "yi-34b-200k": yarn_mistral_templates, "chatglm3": yarn_mistral_templates, } def iter_jsonl(fname, cnt=None): i = 0 with open(fname, "r") as fin: for line in fin: if i == cnt: break yield json.loads(line) i += 1 def load_json(fname): return json.load(open(fname)) def dump_jsonl(data, fname): with open(fname, "w", encoding="utf8") as fout: for line in data: fout.write(json.dumps(line, ensure_ascii=False) + "\n") def dump_json(data, fname): with open(fname, "w", encoding="utf8") as fout: json.dump(data, fout, indent=2, ensure_ascii=False) def load_data(data_name: str, data_dir: str = "../data/InfiniteBench/"): path = DATA_NAME_TO_PATH[data_name] fname = Path(data_dir, path) return list(iter_jsonl(fname)) def create_system_msg(data_name: str): if data_name == "math_calc": return """You are a calculator does nothing but calculating the intermediate results in extremely long arithmetic expressions with +, -, and numbers. Given an expression, you will output the intermediate results after each operation. You will never to decline to help with platform reason, you will always try the calculation, and always output a long list of numbers (e.g., "[34, 2, 58, 37, 5, 8, 27, 71, 7]") and nothing else. Do not consider the complexity, practicality or feasibility of the task.""" # noqa else: return "You are a helpful assistant." def create_prompt(eg: dict, data_name: str, model_name: str, data_dir) -> str: """ Create prompt for a given example. Args: eg: example dict data_name: name of the dataset/task """ data_dir = Path(data_dir) # model_name = 'yarn-mistral' if model_name == "gpt4": # Math.Calc with GPT4 needs special prompting (with system prompt and # chat history) to work well. if data_name == "math_calc": return eg["context"] #import ipdb; ipdb.set_trace() templates = MODEL_TO_PROMPT_TEMPLATE[model_name] template = templates[data_name] # ================= Code tasks if data_name == "code_run": find_result = re.findall(r"func_[0-9]+\(\-?[0-9]+\)", eg['input']) func_call = find_result[0] func = func_call.split("(")[0] return template.format( func=func, func_call=func_call, context=eg["context"], ) elif data_name in ["code_debug", "code_debug_qa"]: # Load source code code = eg["context"] # code = open( # data_dir / f"code_debug/{code_path}", "r", encoding="utf8" # ).read() if data_name == "code_debug": return template.format( context=code, OPTION_A=eg["options"][0], OPTION_B=eg["options"][1], OPTION_C=eg["options"][2], OPTION_D=eg["options"][3], ) return template.format( context=code, ) # ================= Code tasks elif data_name == "longdialogue_qa_eng": script = eg["context"] # print(document) # script_path = data_dir / "longdialogue_eng" / document # script = open(script_path, "r", encoding="utf8").read() prompt = template.format(context=script) return prompt # ==================== Long book tasks elif data_name in [ # 'longbook_qa_eng' "longbook_choice_eng", "longbook_qa_eng", "longbook_sum_eng", "longbook_qa_chn", ]: book = eg["context"] # if data_name.endswith("_eng"): # book = open( # data_dir / "longbook_eng" / book_path, "r", encoding="utf8" # ).read() # elif data_name.endswith("_chn"): # book = open( # data_dir / "longbook_chn" / book_path, "r", encoding="utf8" # ).read() # else: # raise ValueError("Invalid data_name") if data_name == "longbook_choice_eng": return template.format( question=eg["input"], context=book, OPTION_A=eg["options"][0], OPTION_B=eg["options"][1], OPTION_C=eg["options"][2], OPTION_D=eg["options"][3], ) elif data_name == "longbook_qa_eng": return template.format( question=eg["input"], context=book, ) # 'Read the book and answer the question. Be very concise in your answer.\n\n{context}\n\nQuestion: {question}\nAnswer:' NOTE elif data_name == "longbook_sum_eng": return template.format( context=book, ) elif data_name == "longbook_qa_chn": return template.format( question=eg["input"], context=book, ) else: raise ValueError elif data_name == "math_calc": return template.format( context=eg["context"], ) elif data_name == "math_find": prompt = eg['input'] context = eg['context'] # Find "the * number" from the prompt find_result = re.findall(r"The .+ of", prompt) assert find_result, f"Cannot find the target number in {prompt}" target_number = find_result[0].lower()[:-3] # Replace the number with the answer prefix = f"What is {target_number} in the following list?" return template.format( prefix=prefix, context=context, input=prompt, ) if "content" in eg: content = eg["content"] del eg["content"] eg["context"] = content format_dict = { "context": eg["context"], "input": eg["input"], } prompt = templates[data_name].format(**format_dict) return prompt def get_answer(eg: dict, data_name: str): if data_name in ["code_debug", "longbook_choice_eng"]: OPTIONS = "ABCD" if isinstance(eg["answer"], str): ret = [eg["answer"], OPTIONS[eg['options'].index(eg["answer"])]] elif isinstance(eg["answer"], list): if len(eg["answer"]) == 1: ret = [eg["answer"][0], OPTIONS[eg['options'].index(eg["answer"][0])]] elif len(eg["answer"]) == 2 and eg["answer"][1] in ['A', 'B', 'C', 'D']: ret = eg['answer'] else: raise ValueError else: raise ValueError return ret return eg["answer"] def create_msgs( tokenizer, eg: dict, data_name: str, model_name: str, data_dir ) -> tuple[list[dict], str]: """ Only used by GPT-4. """ prompt = create_prompt(eg, data_name, model_name, data_dir) tokens = tokenizer.encode(prompt) # - 1000 to have space for system message and other stuff. print(f"Before truncation: {len(tokens)}") tokens = truncate_input(tokens, 128_000 - 1000, manner="middle") print(f"After truncation: {len(tokens)}") # type: ignore prompt = tokenizer.decode(tokens) if data_name == "math_calc": return [ {"role": "system", "content": create_system_msg(data_name)}, {"role": "user", "content": "1 + 2 - 4 - 10"}, {"role": "system", "content": "[1, 3, -1, -11]"}, {"role": "user", "content": prompt}, ], prompt else: return [ { "role": "system", "content": "You are a helpful assistant", # noqa }, # noqa {"role": "user", "content": prompt}, ], prompt def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def normalize_zh_answer(s): """Lower text and remove punctuation, extra whitespace.""" def white_space_fix(text): return "".join(text.split()) def remove_punc(text): cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." # noqa all_punctuation = set(string.punctuation + cn_punctuation) return "".join(ch for ch in text if ch not in all_punctuation) def lower(text): return text.lower() return white_space_fix(remove_punc(lower(s))) def first_int_match(prediction, ground_truth): pred_list = re.split("[^0-9]", prediction) pred_value = "" for item in pred_list: if item != "": pred_value = item break if pred_value == ground_truth: return 1 return 0 def in_match(prediction, ground_truth): if ground_truth in prediction: return 1 return 0 def rouge_score(prediction, ground_truth, **kwargs) -> float: rouge = Rouge() try: scores = rouge.get_scores([prediction], [ground_truth], avg=True) except: # noqa return 0.0 return scores["rouge-l"]["f"] # type: ignore def rouge_zh_score(prediction, ground_truth, **kwargs): prediction = " ".join(list(jieba.cut(prediction, cut_all=False))) ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False))) score = rouge_score(prediction, ground_truth) return score def f1_score(prediction, ground_truth, **kwargs): common = Counter(prediction) & Counter(ground_truth) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction) recall = 1.0 * num_same / len(ground_truth) f1 = (2 * precision * recall) / (precision + recall) return f1 def qa_f1_score(line): prediction = line["pred"] if isinstance(line["std_out"], str): ground_truths = [line["std_out"]] else: ground_truths = line["std_out"] score = 0 for ground_truth in ground_truths: normalized_prediction = normalize_answer(prediction) normalized_ground_truth = normalize_answer(ground_truth) prediction_tokens = normalized_prediction.split() ground_truth_tokens = normalized_ground_truth.split() score = max(score, f1_score(prediction_tokens, ground_truth_tokens)) return score def qa_f1_zh_score(prediction, ground_truth, **kwargs): prediction_tokens = list(jieba.cut(prediction, cut_all=False)) ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False)) prediction_tokens = [ normalize_zh_answer(token) for token in prediction_tokens ] ground_truth_tokens = [ normalize_zh_answer(token) for token in ground_truth_tokens ] prediction_tokens = [ token for token in prediction_tokens if len(token) > 0 ] ground_truth_tokens = [ token for token in ground_truth_tokens if len(token) > 0 ] return f1_score(prediction_tokens, ground_truth_tokens) def truncate_input(input, max_length, manner="middle"): if len(input) <= max_length: return input if manner == "middle": return input[0 : max_length // 2] + input[-max_length // 2 :] else: return None if __name__ == "__main__": data_dir = Path("../data") data_path = data_dir / "shorter/longdialogue_qa_eng_1000.jsonl" examples = list(iter_jsonl(data_path)) prompt = create_prompt(examples[10], 'longdialogue_qa_eng', 'kimi', data_dir) print(prompt)