root commited on
Commit
43e4235
1 Parent(s): 2cb277a

update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -23,11 +23,11 @@ Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)
23
 
24
 
25
  ![Example Image](overview.png)
26
- | | ChatQA-2-70B | GPT-4-Turbo-2024-04-09 | Qwen2-72B-Instruct | Llama3.1-70B-Instruct |
27
  | -- |:--:|:--:|:--:|:--:|
28
  | Ultra-long (4k) | 41.04 | 33.16 | 39.77 | 39.81 |
29
  | Long (32k) | 48.15 | 51.93 | 49.94 | 49.92 |
30
- | Short (4k) | 56.30 | 54.72 | 54.06 | 52.12 |
31
 
32
  Note that ChatQA-2 is built based on Llama-3 base model.
33
 
@@ -65,7 +65,7 @@ Assistant:
65
  <pre>
66
  This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context.
67
  </pre>
68
- **Note that our ChatQA-1.5 models are optimized for the capability with context, e.g., over documents or retrieved context.**
69
 
70
  ## How to use
71
 
@@ -75,7 +75,7 @@ This can be applied to the scenario where the whole document can be fitted into
75
  from transformers import AutoTokenizer, AutoModelForCausalLM
76
  import torch
77
 
78
- model_id = "nvidia/Llama3-ChatQA-1.5-8B"
79
 
80
  tokenizer = AutoTokenizer.from_pretrained(model_id)
81
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
 
23
 
24
 
25
  ![Example Image](overview.png)
26
+ <!-- | | ChatQA-2-70B | GPT-4-Turbo-2024-04-09 | Qwen2-72B-Instruct | Llama3.1-70B-Instruct |
27
  | -- |:--:|:--:|:--:|:--:|
28
  | Ultra-long (4k) | 41.04 | 33.16 | 39.77 | 39.81 |
29
  | Long (32k) | 48.15 | 51.93 | 49.94 | 49.92 |
30
+ | Short (4k) | 56.30 | 54.72 | 54.06 | 52.12 | -->
31
 
32
  Note that ChatQA-2 is built based on Llama-3 base model.
33
 
 
65
  <pre>
66
  This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context.
67
  </pre>
68
+ **Note that our ChatQA-2 models are optimized for the capability with context, e.g., over documents or retrieved context.**
69
 
70
  ## How to use
71
 
 
75
  from transformers import AutoTokenizer, AutoModelForCausalLM
76
  import torch
77
 
78
+ model_id = "nvidia/Llama3-ChatQA-2-8B"
79
 
80
  tokenizer = AutoTokenizer.from_pretrained(model_id)
81
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")