my_model
This model is a fine-tuned version of deepmind/language-perceiver on the financial_phrasebank dataset. It achieves the following results on the evaluation set:
- Loss: 0.3732
- Recall: 0.8749
- Accuracy: 0.8660
- Precision: 0.8280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Recall | Accuracy | Precision |
---|---|---|---|---|---|---|
0.1421 | 1.0 | 273 | 0.3732 | 0.8749 | 0.8660 | 0.8280 |
0.1036 | 2.0 | 546 | 0.3732 | 0.8749 | 0.8660 | 0.8280 |
0.1836 | 3.0 | 819 | 0.3732 | 0.8749 | 0.8660 | 0.8280 |
0.0423 | 4.0 | 1092 | 0.3732 | 0.8749 | 0.8660 | 0.8280 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.9.0+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
- Downloads last month
- 3
Dataset used to train nuriafari/my_model
Evaluation results
- Recall on financial_phrasebankself-reported0.875
- Accuracy on financial_phrasebankself-reported0.866
- Precision on financial_phrasebankself-reported0.828