--- library_name: peft language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/lttc-rebalanced-1-split metrics: - wer model-index: - name: whisper-large-v3-turbo-score-5-rebalanced-1 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/lttc-rebalanced-1-split type: ntnu-smil/lttc-rebalanced-1-split metrics: - type: wer value: 39.732142857142854 name: Wer --- # whisper-large-v3-turbo-score-5-rebalanced-1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/lttc-rebalanced-1-split dataset. It achieves the following results on the evaluation set: - Loss: 3.9922 - Wer: 39.7321 - Cer: 25.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.0378 | 1.0 | 18 | 3.6518 | 40.3159 | 26.1279 | | 0.0389 | 2.0 | 36 | 3.8285 | 40.0412 | 26.6444 | | 0.0023 | 3.0 | 54 | 4.0319 | 40.4876 | 26.5529 | | 0.0021 | 4.0 | 72 | 3.9976 | 39.3544 | 25.5656 | | 0.0004 | 5.0 | 90 | 3.9922 | 39.7321 | 25.9187 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3