--- library_name: transformers language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/lttc-augmented-ft-1 metrics: - wer model-index: - name: whisper-large-v3-turbo-augmented results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/lttc-augmented-ft-1 type: ntnu-smil/lttc-augmented-ft-1 metrics: - type: wer value: 32.36001374098248 name: Wer --- # whisper-large-v3-turbo-augmented This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/lttc-augmented-ft-1 dataset. It achieves the following results on the evaluation set: - Loss: 1.3566 - Wer: 32.3600 - Cer: 18.4747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.0483 | 1.0 | 190 | 1.2801 | 35.8640 | 20.7045 | | 0.0503 | 2.0 | 380 | 1.3510 | 32.5318 | 20.3283 | | 0.0033 | 3.0 | 570 | 1.2776 | 39.3336 | 22.9891 | | 0.0007 | 4.0 | 760 | 1.3057 | 32.6692 | 18.6594 | | 0.0002 | 5.0 | 950 | 1.3566 | 32.3600 | 18.4747 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0