nteku1 commited on
Commit
b521190
1 Parent(s): 0185500

Push model using huggingface_hub.

Browse files
Files changed (3) hide show
  1. README.md +3 -3
  2. config.json +8 -8
  3. pytorch_model.bin +1 -1
README.md CHANGED
@@ -25,7 +25,7 @@ You can then generate text as follows:
25
  ```python
26
  from transformers import pipeline
27
 
28
- generator = pipeline("text-generation", model="nteku1//tmp/tmp3pjve72m/nteku1/Jon_GPT2L_PPO_epi_point1")
29
  outputs = generator("Hello, my llama is cute")
30
  ```
31
 
@@ -35,8 +35,8 @@ If you want to use the model for training or to obtain the outputs from the valu
35
  from transformers import AutoTokenizer
36
  from trl import AutoModelForCausalLMWithValueHead
37
 
38
- tokenizer = AutoTokenizer.from_pretrained("nteku1//tmp/tmp3pjve72m/nteku1/Jon_GPT2L_PPO_epi_point1")
39
- model = AutoModelForCausalLMWithValueHead.from_pretrained("nteku1//tmp/tmp3pjve72m/nteku1/Jon_GPT2L_PPO_epi_point1")
40
 
41
  inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
42
  outputs = model(**inputs, labels=inputs["input_ids"])
 
25
  ```python
26
  from transformers import pipeline
27
 
28
+ generator = pipeline("text-generation", model="nteku1//tmp/tmpu05xwfmf/nteku1/Jon_GPT2L_PPO_epi_point1")
29
  outputs = generator("Hello, my llama is cute")
30
  ```
31
 
 
35
  from transformers import AutoTokenizer
36
  from trl import AutoModelForCausalLMWithValueHead
37
 
38
+ tokenizer = AutoTokenizer.from_pretrained("nteku1//tmp/tmpu05xwfmf/nteku1/Jon_GPT2L_PPO_epi_point1")
39
+ model = AutoModelForCausalLMWithValueHead.from_pretrained("nteku1//tmp/tmpu05xwfmf/nteku1/Jon_GPT2L_PPO_epi_point1")
40
 
41
  inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
42
  outputs = model(**inputs, labels=inputs["input_ids"])
config.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "accelerator_kwargs": {},
3
  "adap_kl_ctrl": true,
4
- "backward_batch_size": 16,
5
- "batch_size": 16,
6
  "cliprange": 0.2,
7
  "cliprange_value": 0.2,
8
  "compare_steps": 1,
@@ -10,21 +10,21 @@
10
  "exp_name": "colab_kernel_launcher",
11
  "forward_batch_size": null,
12
  "gamma": 1,
13
- "global_backward_batch_size": 16,
14
- "global_batch_size": 16,
15
- "gradient_accumulation_steps": 4,
16
  "horizon": 10000,
17
  "init_kl_coef": 0.2,
18
  "is_encoder_decoder": false,
19
  "is_peft_model": true,
20
  "kl_penalty": "kl",
21
  "lam": 0.95,
22
- "learning_rate": 1.41e-05,
23
  "log_with": null,
24
  "max_grad_norm": null,
25
- "mini_batch_size": 4,
26
  "model_name": "Setpember/sft_gpt2_large",
27
- "optimize_cuda_cache": true,
28
  "optimize_device_cache": false,
29
  "ppo_epochs": 4,
30
  "project_kwargs": {},
 
1
  {
2
  "accelerator_kwargs": {},
3
  "adap_kl_ctrl": true,
4
+ "backward_batch_size": 1,
5
+ "batch_size": 256,
6
  "cliprange": 0.2,
7
  "cliprange_value": 0.2,
8
  "compare_steps": 1,
 
10
  "exp_name": "colab_kernel_launcher",
11
  "forward_batch_size": null,
12
  "gamma": 1,
13
+ "global_backward_batch_size": 1,
14
+ "global_batch_size": 256,
15
+ "gradient_accumulation_steps": 1,
16
  "horizon": 10000,
17
  "init_kl_coef": 0.2,
18
  "is_encoder_decoder": false,
19
  "is_peft_model": true,
20
  "kl_penalty": "kl",
21
  "lam": 0.95,
22
+ "learning_rate": 1.41e-08,
23
  "log_with": null,
24
  "max_grad_norm": null,
25
+ "mini_batch_size": 1,
26
  "model_name": "Setpember/sft_gpt2_large",
27
+ "optimize_cuda_cache": null,
28
  "optimize_device_cache": false,
29
  "ppo_epochs": 4,
30
  "project_kwargs": {},
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5bdcebd3247fc826505a69a4a257c8632e750e6d27d97042c1c23ef58ab45f30
3
  size 6652
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de06f6e25ee44c6eaa85f340acbe8ef8a7c9d94a01a79e04ebbf2b297dc25c51
3
  size 6652