Push model using huggingface_hub.
Browse files- README.md +3 -3
- config.json +8 -8
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -25,7 +25,7 @@ You can then generate text as follows:
|
|
25 |
```python
|
26 |
from transformers import pipeline
|
27 |
|
28 |
-
generator = pipeline("text-generation", model="nteku1//tmp/
|
29 |
outputs = generator("Hello, my llama is cute")
|
30 |
```
|
31 |
|
@@ -35,8 +35,8 @@ If you want to use the model for training or to obtain the outputs from the valu
|
|
35 |
from transformers import AutoTokenizer
|
36 |
from trl import AutoModelForCausalLMWithValueHead
|
37 |
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained("nteku1//tmp/
|
39 |
-
model = AutoModelForCausalLMWithValueHead.from_pretrained("nteku1//tmp/
|
40 |
|
41 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
42 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
|
|
25 |
```python
|
26 |
from transformers import pipeline
|
27 |
|
28 |
+
generator = pipeline("text-generation", model="nteku1//tmp/tmpu05xwfmf/nteku1/Jon_GPT2L_PPO_epi_point1")
|
29 |
outputs = generator("Hello, my llama is cute")
|
30 |
```
|
31 |
|
|
|
35 |
from transformers import AutoTokenizer
|
36 |
from trl import AutoModelForCausalLMWithValueHead
|
37 |
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("nteku1//tmp/tmpu05xwfmf/nteku1/Jon_GPT2L_PPO_epi_point1")
|
39 |
+
model = AutoModelForCausalLMWithValueHead.from_pretrained("nteku1//tmp/tmpu05xwfmf/nteku1/Jon_GPT2L_PPO_epi_point1")
|
40 |
|
41 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
42 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
config.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"accelerator_kwargs": {},
|
3 |
"adap_kl_ctrl": true,
|
4 |
-
"backward_batch_size":
|
5 |
-
"batch_size":
|
6 |
"cliprange": 0.2,
|
7 |
"cliprange_value": 0.2,
|
8 |
"compare_steps": 1,
|
@@ -10,21 +10,21 @@
|
|
10 |
"exp_name": "colab_kernel_launcher",
|
11 |
"forward_batch_size": null,
|
12 |
"gamma": 1,
|
13 |
-
"global_backward_batch_size":
|
14 |
-
"global_batch_size":
|
15 |
-
"gradient_accumulation_steps":
|
16 |
"horizon": 10000,
|
17 |
"init_kl_coef": 0.2,
|
18 |
"is_encoder_decoder": false,
|
19 |
"is_peft_model": true,
|
20 |
"kl_penalty": "kl",
|
21 |
"lam": 0.95,
|
22 |
-
"learning_rate": 1.41e-
|
23 |
"log_with": null,
|
24 |
"max_grad_norm": null,
|
25 |
-
"mini_batch_size":
|
26 |
"model_name": "Setpember/sft_gpt2_large",
|
27 |
-
"optimize_cuda_cache":
|
28 |
"optimize_device_cache": false,
|
29 |
"ppo_epochs": 4,
|
30 |
"project_kwargs": {},
|
|
|
1 |
{
|
2 |
"accelerator_kwargs": {},
|
3 |
"adap_kl_ctrl": true,
|
4 |
+
"backward_batch_size": 1,
|
5 |
+
"batch_size": 256,
|
6 |
"cliprange": 0.2,
|
7 |
"cliprange_value": 0.2,
|
8 |
"compare_steps": 1,
|
|
|
10 |
"exp_name": "colab_kernel_launcher",
|
11 |
"forward_batch_size": null,
|
12 |
"gamma": 1,
|
13 |
+
"global_backward_batch_size": 1,
|
14 |
+
"global_batch_size": 256,
|
15 |
+
"gradient_accumulation_steps": 1,
|
16 |
"horizon": 10000,
|
17 |
"init_kl_coef": 0.2,
|
18 |
"is_encoder_decoder": false,
|
19 |
"is_peft_model": true,
|
20 |
"kl_penalty": "kl",
|
21 |
"lam": 0.95,
|
22 |
+
"learning_rate": 1.41e-08,
|
23 |
"log_with": null,
|
24 |
"max_grad_norm": null,
|
25 |
+
"mini_batch_size": 1,
|
26 |
"model_name": "Setpember/sft_gpt2_large",
|
27 |
+
"optimize_cuda_cache": null,
|
28 |
"optimize_device_cache": false,
|
29 |
"ppo_epochs": 4,
|
30 |
"project_kwargs": {},
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6652
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de06f6e25ee44c6eaa85f340acbe8ef8a7c9d94a01a79e04ebbf2b297dc25c51
|
3 |
size 6652
|