nsanghi commited on
Commit
a97c258
1 Parent(s): 231fbe6

Push to Hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 152.20 +/- 2.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **CartPole-v1**
25
+ This is a trained model of a **DQN** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo dqn --env CartPole-v1 -orga nsanghi -f logs/
47
+ python -m rl_zoo3.enjoy --algo dqn --env CartPole-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo dqn --env CartPole-v1 -orga nsanghi -f logs/
53
+ python -m rl_zoo3.enjoy --algo dqn --env CartPole-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo dqn --env CartPole-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo dqn --env CartPole-v1 -f logs/ -orga nsanghi
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('buffer_size', 100000),
67
+ ('exploration_final_eps', 0.04),
68
+ ('exploration_fraction', 0.16),
69
+ ('gamma', 0.99),
70
+ ('gradient_steps', 128),
71
+ ('learning_rate', 0.0023),
72
+ ('learning_starts', 1000),
73
+ ('n_timesteps', 50000.0),
74
+ ('policy', 'MlpPolicy'),
75
+ ('policy_kwargs', 'dict(net_arch=[256, 256])'),
76
+ ('target_update_interval', 10),
77
+ ('train_freq', 256),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - CartPole-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 10
14
+ - - eval_freq
15
+ - 10000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - 400
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - true
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - 10000
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 4205676148
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/CartPole-v1__dqn__4205676148__1698256789
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - dqn-cartpole
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - buffer_size
5
+ - 100000
6
+ - - exploration_final_eps
7
+ - 0.04
8
+ - - exploration_fraction
9
+ - 0.16
10
+ - - gamma
11
+ - 0.99
12
+ - - gradient_steps
13
+ - 128
14
+ - - learning_rate
15
+ - 0.0023
16
+ - - learning_starts
17
+ - 1000
18
+ - - n_timesteps
19
+ - 50000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[256, 256])
24
+ - - target_update_interval
25
+ - 10
26
+ - - train_freq
27
+ - 256
dqn-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6a6e62ebce57ab258e1e17e873086d91349745f1365c364002c193661356cf
3
+ size 1107479
dqn-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
dqn-CartPole-v1/data ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7f7e7d8d8310>",
9
+ "_build": "<function DQNPolicy._build at 0x7f7e7d8d83a0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7e7d8d8430>",
11
+ "forward": "<function DQNPolicy.forward at 0x7f7e7d8d84c0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7f7e7d8d8550>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7e7d8d85e0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f7e7d8d8670>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f7e7d8cadc0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 30000,
26
+ "_total_timesteps": 50000,
27
+ "_num_timesteps_at_start": 0,
28
+ "seed": 0,
29
+ "action_noise": null,
30
+ "start_time": 1698256792389686494,
31
+ "learning_rate": {
32
+ ":type:": "<class 'function'>",
33
+ ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
34
+ },
35
+ "tensorboard_log": "runs/CartPole-v1__dqn__4205676148__1698256789/CartPole-v1",
36
+ "_last_obs": null,
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAMTQED0Ugzw/oNLJPdyrmL6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
44
+ },
45
+ "_episode_num": 379,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.40002000000000004,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF1AAAAAAACMAWyUS3WMAXSUR0BFtmVJL/S6dX2UKGgGR0BloAAAAAAAaAdLrWgIR0BFvYKIBRyfdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BGBshouf29dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BGCCb+cYqHdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BGCVTaTOgQdX2UKGgGR0BCgAAAAAAAaAdLJWgIR0BGCwMx46fbdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BGDDo6jnFHdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BGDnnU2DQJdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BGD0RWcSXddX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BGEMWGh24edX2UKGgGR0BgIAAAAAAAaAdLgWgIR0BGjioKlYU4dX2UKGgGR0Bg4AAAAAAAaAdLh2gIR0BHBpHy3CsPdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0BHDlfJFLFodX2UKGgGR0BhgAAAAAAAaAdLjGgIR0BHk/LcKw6idX2UKGgGR0BcAAAAAAAAaAdLcGgIR0BHnBDw6QvIdX2UKGgGR0BDgAAAAAAAaAdLJ2gIR0BHn9oN/e+FdX2UKGgGR0BcgAAAAAAAaAdLcmgIR0BH0sz/IbOvdX2UKGgGR0BfgAAAAAAAaAdLfmgIR0BH3DS5RTCMdX2UKGgGR0BewAAAAAAAaAdLe2gIR0BIIAdwNsnBdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BIJNYr8R+SdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BIKnZCfHxSdX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BIq2EK3NLUdX2UKGgGR0BhYAAAAAAAaAdLi2gIR0BIruIhyKekdX2UKGgGR0BgAAAAAAAAaAdLgGgIR0BI52cz67/XdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BI6OG9HtngdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BI6mplz2eydX2UKGgGR0BXwAAAAAAAaAdLX2gIR0BI7yMUAT7EdX2UKGgGR0BFgAAAAAAAaAdLK2gIR0BI8WgFotcwdX2UKGgGR0Bi4AAAAAAAaAdLl2gIR0BJTI1DSgGsdX2UKGgGR0BwoAAAAAAAaAdNCgFoCEdASdVBt1p0wXV9lChoBkdAZKAAAAAAAGgHS6VoCEdASjevB7/n4nV9lChoBkdAccAAAAAAAGgHTRwBaAhHQEqBWvr4WUN1fZQoaAZHQHMgAAAAAABoB00yAWgIR0BK2hzeXRgJdX2UKGgGR0BfAAAAAAAAaAdLfGgIR0BK4GxD9fkWdX2UKGgGR0BzMAAAAAAAaAdNMwFoCEdAS39vZRKpUHV9lChoBkdAXQAAAAAAAGgHS3RoCEdAS4ZX2dupCXV9lChoBkdAXkAAAAAAAGgHS3loCEdAS8bEaVD8cnV9lChoBkdAXgAAAAAAAGgHS3hoCEdAS8wh6jWTYHV9lChoBkdAXwAAAAAAAGgHS3xoCEdATAhMewLVnXV9lChoBkdAaAAAAAAAAGgHS8BoCEdATBDneSB9TnV9lChoBkdAZYAAAAAAAGgHS6xoCEdATFMU47zTW3V9lChoBkdAYOAAAAAAAGgHS4doCEdATFrMNc4YJnV9lChoBkdAWUAAAAAAAGgHS2VoCEdATSewTufEoHV9lChoBkdAWQAAAAAAAGgHS2RoCEdATS9H+ZPVNHV9lChoBkdAWsAAAAAAAGgHS2toCEdATVs9Oh0yQHV9lChoBkdAZeAAAAAAAGgHS69oCEdATWNpXZGrj3V9lChoBkdAYeAAAAAAAGgHS49oCEdATZuF36hxpHV9lChoBkdAX0AAAAAAAGgHS31oCEdATaIgaFVT73V9lChoBkdAXUAAAAAAAGgHS3VoCEdATejDVH4GlnV9lChoBkdAYOAAAAAAAGgHS4doCEdATe+4XoC+13V9lChoBkdAToAAAAAAAGgHSz1oCEdATipbOeJ53XV9lChoBkdAYOAAAAAAAGgHS4doCEdATjGzyBkI5nV9lChoBkdAYQAAAAAAAGgHS4hoCEdATrSPn0TURXV9lChoBkdAZ8AAAAAAAGgHS75oCEdATrmETQE6k3V9lChoBkdAcHAAAAAAAGgHTQcBaAhHQE8CqSX+l0p1fZQoaAZHQHcAAAAAAABoB01wAWgIR0BP99PLxI8RdX2UKGgGR0BXQAAAAAAAaAdLXWgIR0BP/WSlnAZbdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BP/m5UcXFcdX2UKGgGR0BZQAAAAAAAaAdLZWgIR0BQN6/qPfbcdX2UKGgGR0BeAAAAAAAAaAdLeGgIR0BQOfLX+VC5dX2UKGgGR0BfgAAAAAAAaAdLfmgIR0BQWOQEIPbxdX2UKGgGR0BpwAAAAAAAaAdLzmgIR0BQXmdNFjNIdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BQgkL2HtWudX2UKGgGR0Bh4AAAAAAAaAdLj2gIR0BQo9Ujs2NvdX2UKGgGR0B0EAAAAAAAaAdNQQFoCEdAUOMpXp4bCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFFMSElE7XB1fZQoaAZHQF6AAAAAAABoB0t6aAhHQFFPQswtapx1fZQoaAZHQF+AAAAAAABoB0t+aAhHQFGbJ0W/JvJ1fZQoaAZHQGBgAAAAAABoB0uDaAhHQFGfQAuIyj51fZQoaAZHQGHAAAAAAABoB0uOaAhHQFG7KYzBRAN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSB0S/TLGJdX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BSPQiA2AG0dX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BSP5v1lGwzdX2UKGgGR0BXQAAAAAAAaAdLXWgIR0BSQxBRhttRdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BSQ1wYLsrvdX2UKGgGR0BcQAAAAAAAaAdLcWgIR0BSaezdDYywdX2UKGgGR0BdQAAAAAAAaAdLdWgIR0BSbAqd6LOzdX2UKGgGR0BlgAAAAAAAaAdLrGgIR0BSi0mplz2fdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUwjhcZ9/jXV9lChoBkdAYWAAAAAAAGgHS4toCEdAUw41cdHUdHV9lChoBkdAYqAAAAAAAGgHS5VoCEdAU1/JOnEVFnV9lChoBkdAYCAAAAAAAGgHS4FoCEdAU6bNQj2SMnV9lChoBkdAc7AAAAAAAGgHTTsBaAhHQFPwGlQ/HHZ1fZQoaAZHQGHgAAAAAABoB0uPaAhHQFP2g/Tspod1fZQoaAZHQGFAAAAAAABoB0uKaAhHQFQvGSIP9UF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BUpxgy/KyOdX2UKGgGR0BmIAAAAAAAaAdLsWgIR0BUw8oDxLCfdX2UKGgGR0BvoAAAAAAAaAdL/WgIR0BU5B6OYIBzdX2UKGgGR0BnwAAAAAAAaAdLvmgIR0BU6bj5sTFmdX2UKGgGR0Bz8AAAAAAAaAdNPwFoCEdAVVGOR1X/53V9lChoBkdAVUAAAAAAAGgHS1VoCEdAVVQoKD0163V9lChoBkdAZ4AAAAAAAGgHS7xoCEdAVZfXoTwlSnV9lChoBkdAZuAAAAAAAGgHS7doCEdAVZ3iZOSGJ3V9lChoBkdAYsAAAAAAAGgHS5ZoCEdAVe6HoHLRr3V9lChoBkdAYIAAAAAAAGgHS4RoCEdAVfHxaxHG0nV9lChoBkdASYAAAAAAAGgHSzNoCEdAVi2O7xusLnV9lChoBkdAbiAAAAAAAGgHS/FoCEdAVlAn+hoM8nV9lChoBkdAYEAAAAAAAGgHS4JoCEdAVlTCbc45tHV9lChoBkdAJgAAAAAAAGgHSwtoCEdAVlUOCoS+QHV9lChoBkdAXgAAAAAAAGgHS3hoCEdAVnUeQuEmIHVlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 14592,
59
+ "observation_space": {
60
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
62
+ "dtype": "float32",
63
+ "bounded_below": "[ True True True True]",
64
+ "bounded_above": "[ True True True True]",
65
+ "_shape": [
66
+ 4
67
+ ],
68
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
69
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
70
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
71
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
72
+ "_np_random": null
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
77
+ "n": "2",
78
+ "start": "0",
79
+ "_shape": [],
80
+ "dtype": "int64",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 1,
84
+ "buffer_size": 1,
85
+ "batch_size": 64,
86
+ "learning_starts": 1000,
87
+ "tau": 1.0,
88
+ "gamma": 0.99,
89
+ "gradient_steps": 128,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f7e7d8bcaf0>",
97
+ "add": "<function ReplayBuffer.add at 0x7f7e7d8bcb80>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7f7e7d8bcc10>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f7e7d8bcca0>",
100
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f7e7d8bcd30>)>",
101
+ "__abstractmethods__": "frozenset()",
102
+ "_abc_impl": "<_abc._abc_data object at 0x7f7e7d838440>"
103
+ },
104
+ "replay_buffer_kwargs": {},
105
+ "train_freq": {
106
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
107
+ ":serialized:": "gAWVYgAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RNAAFoAIwSVHJhaW5GcmVxdWVuY3lVbml0lJOUjARzdGVwlIWUUpSGlIGULg=="
108
+ },
109
+ "use_sde_at_warmup": false,
110
+ "exploration_initial_eps": 1.0,
111
+ "exploration_final_eps": 0.04,
112
+ "exploration_fraction": 0.16,
113
+ "target_update_interval": 10,
114
+ "_n_calls": 29999,
115
+ "max_grad_norm": 10,
116
+ "exploration_rate": 0.04,
117
+ "lr_schedule": {
118
+ ":type:": "<class 'function'>",
119
+ ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
120
+ },
121
+ "batch_norm_stats": [],
122
+ "batch_norm_stats_target": [],
123
+ "exploration_schedule": {
124
+ ":type:": "<class 'function'>",
125
+ ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+keuFHrhR7hZRSlGg3Rz/EeuFHrhR7hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
126
+ }
127
+ }
dqn-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9d4396f0ff5bb988d5441e07812ed5e22748221d77e0758e3dcf4cf9ea38276
3
+ size 545519
dqn-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc0592d099dd214d518d11bf823825f887a715cdcb2ac4e2d2320749a0660961
3
+ size 544641
dqn-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.1
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:321923938fd02e6ac892e5b5764290a7da3aadb46767d53c937ec60f513a3559
3
+ size 90679
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 152.2, "std_reward": 2.85657137141714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T23:47:14.927431"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f5619a5177ffcc0f9b123aeced9c27be9e0719a9f3de4d163424bb8780cb6a
3
+ size 11172