Push to Hub
Browse files- .gitattributes +1 -0
- README.md +84 -0
- args.yml +81 -0
- config.yml +27 -0
- dqn-CartPole-v1.zip +3 -0
- dqn-CartPole-v1/_stable_baselines3_version +1 -0
- dqn-CartPole-v1/data +127 -0
- dqn-CartPole-v1/policy.optimizer.pth +3 -0
- dqn-CartPole-v1/policy.pth +3 -0
- dqn-CartPole-v1/pytorch_variables.pth +3 -0
- dqn-CartPole-v1/system_info.txt +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 152.20 +/- 2.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **DQN** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env CartPole-v1 -orga nsanghi -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo dqn --env CartPole-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env CartPole-v1 -orga nsanghi -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo dqn --env CartPole-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo dqn --env CartPole-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env CartPole-v1 -f logs/ -orga nsanghi
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 64),
|
66 |
+
('buffer_size', 100000),
|
67 |
+
('exploration_final_eps', 0.04),
|
68 |
+
('exploration_fraction', 0.16),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('gradient_steps', 128),
|
71 |
+
('learning_rate', 0.0023),
|
72 |
+
('learning_starts', 1000),
|
73 |
+
('n_timesteps', 50000.0),
|
74 |
+
('policy', 'MlpPolicy'),
|
75 |
+
('policy_kwargs', 'dict(net_arch=[256, 256])'),
|
76 |
+
('target_update_interval', 10),
|
77 |
+
('train_freq', 256),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
80 |
+
|
81 |
+
# Environment Arguments
|
82 |
+
```python
|
83 |
+
{'render_mode': 'rgb_array'}
|
84 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- dqn
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- CartPole-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 10
|
14 |
+
- - eval_freq
|
15 |
+
- 10000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- 400
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- true
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- 10000
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 4205676148
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/CartPole-v1__dqn__4205676148__1698256789
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- dqn-cartpole
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - buffer_size
|
5 |
+
- 100000
|
6 |
+
- - exploration_final_eps
|
7 |
+
- 0.04
|
8 |
+
- - exploration_fraction
|
9 |
+
- 0.16
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - gradient_steps
|
13 |
+
- 128
|
14 |
+
- - learning_rate
|
15 |
+
- 0.0023
|
16 |
+
- - learning_starts
|
17 |
+
- 1000
|
18 |
+
- - n_timesteps
|
19 |
+
- 50000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[256, 256])
|
24 |
+
- - target_update_interval
|
25 |
+
- 10
|
26 |
+
- - train_freq
|
27 |
+
- 256
|
dqn-CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de6a6e62ebce57ab258e1e17e873086d91349745f1365c364002c193661356cf
|
3 |
+
size 1107479
|
dqn-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
dqn-CartPole-v1/data
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f7e7d8d8310>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7f7e7d8d83a0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f7e7d8d8430>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7f7e7d8d84c0>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7f7e7d8d8550>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7e7d8d85e0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f7e7d8d8670>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7e7d8cadc0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"num_timesteps": 30000,
|
26 |
+
"_total_timesteps": 50000,
|
27 |
+
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": 0,
|
29 |
+
"action_noise": null,
|
30 |
+
"start_time": 1698256792389686494,
|
31 |
+
"learning_rate": {
|
32 |
+
":type:": "<class 'function'>",
|
33 |
+
":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
34 |
+
},
|
35 |
+
"tensorboard_log": "runs/CartPole-v1__dqn__4205676148__1698256789/CartPole-v1",
|
36 |
+
"_last_obs": null,
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAMTQED0Ugzw/oNLJPdyrmL6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
44 |
+
},
|
45 |
+
"_episode_num": 379,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": 0.40002000000000004,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF1AAAAAAACMAWyUS3WMAXSUR0BFtmVJL/S6dX2UKGgGR0BloAAAAAAAaAdLrWgIR0BFvYKIBRyfdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BGBshouf29dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BGCCb+cYqHdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BGCVTaTOgQdX2UKGgGR0BCgAAAAAAAaAdLJWgIR0BGCwMx46fbdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BGDDo6jnFHdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BGDnnU2DQJdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BGD0RWcSXddX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BGEMWGh24edX2UKGgGR0BgIAAAAAAAaAdLgWgIR0BGjioKlYU4dX2UKGgGR0Bg4AAAAAAAaAdLh2gIR0BHBpHy3CsPdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0BHDlfJFLFodX2UKGgGR0BhgAAAAAAAaAdLjGgIR0BHk/LcKw6idX2UKGgGR0BcAAAAAAAAaAdLcGgIR0BHnBDw6QvIdX2UKGgGR0BDgAAAAAAAaAdLJ2gIR0BHn9oN/e+FdX2UKGgGR0BcgAAAAAAAaAdLcmgIR0BH0sz/IbOvdX2UKGgGR0BfgAAAAAAAaAdLfmgIR0BH3DS5RTCMdX2UKGgGR0BewAAAAAAAaAdLe2gIR0BIIAdwNsnBdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BIJNYr8R+SdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BIKnZCfHxSdX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BIq2EK3NLUdX2UKGgGR0BhYAAAAAAAaAdLi2gIR0BIruIhyKekdX2UKGgGR0BgAAAAAAAAaAdLgGgIR0BI52cz67/XdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BI6OG9HtngdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BI6mplz2eydX2UKGgGR0BXwAAAAAAAaAdLX2gIR0BI7yMUAT7EdX2UKGgGR0BFgAAAAAAAaAdLK2gIR0BI8WgFotcwdX2UKGgGR0Bi4AAAAAAAaAdLl2gIR0BJTI1DSgGsdX2UKGgGR0BwoAAAAAAAaAdNCgFoCEdASdVBt1p0wXV9lChoBkdAZKAAAAAAAGgHS6VoCEdASjevB7/n4nV9lChoBkdAccAAAAAAAGgHTRwBaAhHQEqBWvr4WUN1fZQoaAZHQHMgAAAAAABoB00yAWgIR0BK2hzeXRgJdX2UKGgGR0BfAAAAAAAAaAdLfGgIR0BK4GxD9fkWdX2UKGgGR0BzMAAAAAAAaAdNMwFoCEdAS39vZRKpUHV9lChoBkdAXQAAAAAAAGgHS3RoCEdAS4ZX2dupCXV9lChoBkdAXkAAAAAAAGgHS3loCEdAS8bEaVD8cnV9lChoBkdAXgAAAAAAAGgHS3hoCEdAS8wh6jWTYHV9lChoBkdAXwAAAAAAAGgHS3xoCEdATAhMewLVnXV9lChoBkdAaAAAAAAAAGgHS8BoCEdATBDneSB9TnV9lChoBkdAZYAAAAAAAGgHS6xoCEdATFMU47zTW3V9lChoBkdAYOAAAAAAAGgHS4doCEdATFrMNc4YJnV9lChoBkdAWUAAAAAAAGgHS2VoCEdATSewTufEoHV9lChoBkdAWQAAAAAAAGgHS2RoCEdATS9H+ZPVNHV9lChoBkdAWsAAAAAAAGgHS2toCEdATVs9Oh0yQHV9lChoBkdAZeAAAAAAAGgHS69oCEdATWNpXZGrj3V9lChoBkdAYeAAAAAAAGgHS49oCEdATZuF36hxpHV9lChoBkdAX0AAAAAAAGgHS31oCEdATaIgaFVT73V9lChoBkdAXUAAAAAAAGgHS3VoCEdATejDVH4GlnV9lChoBkdAYOAAAAAAAGgHS4doCEdATe+4XoC+13V9lChoBkdAToAAAAAAAGgHSz1oCEdATipbOeJ53XV9lChoBkdAYOAAAAAAAGgHS4doCEdATjGzyBkI5nV9lChoBkdAYQAAAAAAAGgHS4hoCEdATrSPn0TURXV9lChoBkdAZ8AAAAAAAGgHS75oCEdATrmETQE6k3V9lChoBkdAcHAAAAAAAGgHTQcBaAhHQE8CqSX+l0p1fZQoaAZHQHcAAAAAAABoB01wAWgIR0BP99PLxI8RdX2UKGgGR0BXQAAAAAAAaAdLXWgIR0BP/WSlnAZbdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BP/m5UcXFcdX2UKGgGR0BZQAAAAAAAaAdLZWgIR0BQN6/qPfbcdX2UKGgGR0BeAAAAAAAAaAdLeGgIR0BQOfLX+VC5dX2UKGgGR0BfgAAAAAAAaAdLfmgIR0BQWOQEIPbxdX2UKGgGR0BpwAAAAAAAaAdLzmgIR0BQXmdNFjNIdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BQgkL2HtWudX2UKGgGR0Bh4AAAAAAAaAdLj2gIR0BQo9Ujs2NvdX2UKGgGR0B0EAAAAAAAaAdNQQFoCEdAUOMpXp4bCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFFMSElE7XB1fZQoaAZHQF6AAAAAAABoB0t6aAhHQFFPQswtapx1fZQoaAZHQF+AAAAAAABoB0t+aAhHQFGbJ0W/JvJ1fZQoaAZHQGBgAAAAAABoB0uDaAhHQFGfQAuIyj51fZQoaAZHQGHAAAAAAABoB0uOaAhHQFG7KYzBRAN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSB0S/TLGJdX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BSPQiA2AG0dX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BSP5v1lGwzdX2UKGgGR0BXQAAAAAAAaAdLXWgIR0BSQxBRhttRdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BSQ1wYLsrvdX2UKGgGR0BcQAAAAAAAaAdLcWgIR0BSaezdDYywdX2UKGgGR0BdQAAAAAAAaAdLdWgIR0BSbAqd6LOzdX2UKGgGR0BlgAAAAAAAaAdLrGgIR0BSi0mplz2fdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUwjhcZ9/jXV9lChoBkdAYWAAAAAAAGgHS4toCEdAUw41cdHUdHV9lChoBkdAYqAAAAAAAGgHS5VoCEdAU1/JOnEVFnV9lChoBkdAYCAAAAAAAGgHS4FoCEdAU6bNQj2SMnV9lChoBkdAc7AAAAAAAGgHTTsBaAhHQFPwGlQ/HHZ1fZQoaAZHQGHgAAAAAABoB0uPaAhHQFP2g/Tspod1fZQoaAZHQGFAAAAAAABoB0uKaAhHQFQvGSIP9UF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BUpxgy/KyOdX2UKGgGR0BmIAAAAAAAaAdLsWgIR0BUw8oDxLCfdX2UKGgGR0BvoAAAAAAAaAdL/WgIR0BU5B6OYIBzdX2UKGgGR0BnwAAAAAAAaAdLvmgIR0BU6bj5sTFmdX2UKGgGR0Bz8AAAAAAAaAdNPwFoCEdAVVGOR1X/53V9lChoBkdAVUAAAAAAAGgHS1VoCEdAVVQoKD0163V9lChoBkdAZ4AAAAAAAGgHS7xoCEdAVZfXoTwlSnV9lChoBkdAZuAAAAAAAGgHS7doCEdAVZ3iZOSGJ3V9lChoBkdAYsAAAAAAAGgHS5ZoCEdAVe6HoHLRr3V9lChoBkdAYIAAAAAAAGgHS4RoCEdAVfHxaxHG0nV9lChoBkdASYAAAAAAAGgHSzNoCEdAVi2O7xusLnV9lChoBkdAbiAAAAAAAGgHS/FoCEdAVlAn+hoM8nV9lChoBkdAYEAAAAAAAGgHS4JoCEdAVlTCbc45tHV9lChoBkdAJgAAAAAAAGgHSwtoCEdAVlUOCoS+QHV9lChoBkdAXgAAAAAAAGgHS3hoCEdAVnUeQuEmIHVlLg=="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 14592,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
62 |
+
"dtype": "float32",
|
63 |
+
"bounded_below": "[ True True True True]",
|
64 |
+
"bounded_above": "[ True True True True]",
|
65 |
+
"_shape": [
|
66 |
+
4
|
67 |
+
],
|
68 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
69 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
70 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
71 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
72 |
+
"_np_random": null
|
73 |
+
},
|
74 |
+
"action_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
+
":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
77 |
+
"n": "2",
|
78 |
+
"start": "0",
|
79 |
+
"_shape": [],
|
80 |
+
"dtype": "int64",
|
81 |
+
"_np_random": "Generator(PCG64)"
|
82 |
+
},
|
83 |
+
"n_envs": 1,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 64,
|
86 |
+
"learning_starts": 1000,
|
87 |
+
"tau": 1.0,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": 128,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f7e7d8bcaf0>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7f7e7d8bcb80>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7f7e7d8bcc10>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f7e7d8bcca0>",
|
100 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f7e7d8bcd30>)>",
|
101 |
+
"__abstractmethods__": "frozenset()",
|
102 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7e7d838440>"
|
103 |
+
},
|
104 |
+
"replay_buffer_kwargs": {},
|
105 |
+
"train_freq": {
|
106 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
107 |
+
":serialized:": "gAWVYgAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RNAAFoAIwSVHJhaW5GcmVxdWVuY3lVbml0lJOUjARzdGVwlIWUUpSGlIGULg=="
|
108 |
+
},
|
109 |
+
"use_sde_at_warmup": false,
|
110 |
+
"exploration_initial_eps": 1.0,
|
111 |
+
"exploration_final_eps": 0.04,
|
112 |
+
"exploration_fraction": 0.16,
|
113 |
+
"target_update_interval": 10,
|
114 |
+
"_n_calls": 29999,
|
115 |
+
"max_grad_norm": 10,
|
116 |
+
"exploration_rate": 0.04,
|
117 |
+
"lr_schedule": {
|
118 |
+
":type:": "<class 'function'>",
|
119 |
+
":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
120 |
+
},
|
121 |
+
"batch_norm_stats": [],
|
122 |
+
"batch_norm_stats_target": [],
|
123 |
+
"exploration_schedule": {
|
124 |
+
":type:": "<class 'function'>",
|
125 |
+
":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+keuFHrhR7hZRSlGg3Rz/EeuFHrhR7hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
126 |
+
}
|
127 |
+
}
|
dqn-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d4396f0ff5bb988d5441e07812ed5e22748221d77e0758e3dcf4cf9ea38276
|
3 |
+
size 545519
|
dqn-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc0592d099dd214d518d11bf823825f887a715cdcb2ac4e2d2320749a0660961
|
3 |
+
size 544641
|
dqn-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dqn-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.1
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:321923938fd02e6ac892e5b5764290a7da3aadb46767d53c937ec60f513a3559
|
3 |
+
size 90679
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 152.2, "std_reward": 2.85657137141714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T23:47:14.927431"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95f5619a5177ffcc0f9b123aeced9c27be9e0719a9f3de4d163424bb8780cb6a
|
3 |
+
size 11172
|