--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: Whisper-large-Jibbali_lang results: [] --- # Whisper-large-Jibbali_lang This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0224 | 1.0 | 300 | 0.0322 | | 0.0207 | 2.0 | 600 | 0.0389 | | 0.0243 | 3.0 | 900 | 0.0349 | | 0.0032 | 4.0 | 1200 | 0.0174 | | 0.0044 | 5.0 | 1500 | 0.0146 | | 0.0066 | 6.0 | 1800 | 0.0132 | | 0.0033 | 7.0 | 2100 | 0.0141 | | 0.0017 | 8.0 | 2400 | 0.0118 | | 0.0008 | 9.0 | 2700 | 0.0130 | | 0.0015 | 10.0 | 3000 | 0.0131 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2