--- license: mit metrics: - mse library_name: diffusers tags: - diffusion - mse - generation - image --- ## Cu~~rsed~~te kitty cats Model Card DDPMCats is a latent noise-to-image diffusion model capable of generating images of cats. For more information about how Stable Diffusion functions, please have a look at 🤗's [Stable Diffusion blog](https://huggingface.co/blog/stable_diffusion). You can use this with the 🧨Diffusers library from [Hugging Face](https://huggingface.co). ![So cute, right?](samples/0029.png) ### Diffusers ```py from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("nroggendorff/cats") pipe = pipeline.to("cuda") image = pipe().images[0] image.save("cat.png") ``` ### Model Details - `train_batch_size`: 16 - `eval_batch_size`: 16 - `num_epochs`: 50 - `gradient_accumulation_steps`: 1 - `learning_rate`: 1e-4 - `lr_warmup_steps`: 500 - `mixed_precision`: "fp16" - `eval_metric`: "mean_squared_error" ### Bias - This model may exhibit biases due to its training data. It will not display images of abused or sick cats, as it prioritizes the well-being of animals. ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model was trained on a medium-to-large-scale dataset: [Cats vs Dogs](https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset/data) ### Developed by - Noa Linden Roggendorff *This model card was written by Noa Roggendorff and is based on the [Stable Diffusion v1-5 Model Card](https://huggingface.co/runwayml/stable-diffusion-v1-5).*