--- library_name: transformers tags: - llama-factory - not-for-all-audiences license: llama3 language: - en datasets: - nothingiisreal/c2-logs-cleaned - nothingiisreal/Claude-3-Opus-Instruct-15K - nothingiisreal/Reddit-Dirty-And-WritingPrompts --- # L3 8B Celeste # Model Making is a process, Follow us for later models! We trained [LLaMA 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) at 8K context using [Reddit Writing Prompts](https://huggingface.co/datasets/nothingiisreal/Reddit-Dirty-And-WritingPrompts), [Opus 15K Instruct](https://huggingface.co/datasets/nothingiisreal/Claude-3-Opus-Instruct-15K) and [c2 logs cleaned](https://huggingface.co/datasets/nothingiisreal/c2-logs-cleaned) # Usage Tips ## System Message / Jailbreak
IF THE GENERATIONS ARE BAD, REMOVE ALL SYSTEM PROMPTS
Particularly SillyTavern default prompts can make the model worse. Claude Jailbreaks should work fine though, there was a lot of them in c2 logs. **You don't need a JB for casual usage but a JB can steer behaviour still.** ## Sampling You **should** also try messing with different settings. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/uzVgp1ZMNV_LRx1stLxJ6.png) ## Preset L3 Instruct with no system prompt or claude jb works, you can also use [this](https://huggingface.co/nothingiisreal/L3-8B-Celeste-v1/blob/main/Celeste-Llama-3-Instruct.json) ## Fewshot First message and last few messages impact this model quite a bit in terms of style, hornyness, personality. **You don't need to have a first message but editing first few messages or having good ones are highly recommended.** ## Hornyness If the model is not horny enough then just edit the last character message to hint at something, the model will pick up on it and build on it. (Or just give the char aphrodisiac pills lol) The model is fine with SFW and doesn't make it NSFW unless you want. It is also able to maintain half-NSFW without devolving down into hardcore. --- # Train Data The split was as follows: - **2K rows from r/WritingPrompts** - **2K rows from r/DirtyWritingPrompts** - **2K rows from Opus Instruct 15K (specifically the 6.5K jsonl)** - **2K rows from c2 logs cleaned** While we did train all system prompts from c2 logs we also have our own system prompts.256 rank on 8K rows
64 rank on 8K rows
64 rank on 1K rows
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/y9hC4bGq-Lt7sDQ23q5db.png) ## Main training Command **Hardware Used:** 4xH100 NVL for 2 hours. Here is the command, edit rank, learning rate, and any other parameter as you wish. ``` !FORCE_TORCHRUN=1 llamafactory-cli train \ --stage sft \ --do_train True \ --model_name_or_path NousResearch/Meta-Llama-3-8B-Instruct \ --preprocessing_num_workers 16 \ --finetuning_type lora \ --quantization_method bitsandbytes \ --use_rslora False \ --lora_rank 64 \ --lora_alpha 64 \ --lora_dropout 0.1 \ --lora_target all \ --template llama3 \ --flash_attn fa2 \ --deepspeed examples/deepspeed/ds_z3_config.json \ --use_unsloth False \ --dataset_dir /workspace/sft \ --dataset dataset_name \ --cutoff_len 8192 \ --learning_rate 4e-6 \ --lr_scheduler_type cosine \ --num_train_epochs 2.0 \ --max_samples 100000 \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 1 \ --logging_steps 3 \ --save_steps 500 \ --warmup_ratio 0.05 \ --val_size 50 \ --eval_strategy steps \ --eval_steps 0.05 \ --optim adamw_bnb_8bit \ --packing False \ --train_on_prompt False \ --report_to all \ --max_grad_norm 1.0 \ --output_dir saves/LLaMA3-8B/trained-models/8krows-dwrp-c2l-opus-lora-4e-6-cosine-24-normal-bs \ --bf16 True \ --plot_loss True \ --ddp_timeout 180000000 \ --per_device_eval_batch_size 4 \ --include_num_input_tokens_seen True ``` --- Wow, you've read all of that? You seem like the person that would join our [discord](https://discord.gg/YcrXhk7QD7) Gemma 9B and 27B at some point? ;)