# -*- coding: utf-8 -*- import numpy as np import torch import torch.nn as nn import math VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"] class FourierEmbedder(nn.Module): """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts each feature dimension of `x[..., i]` into: [ sin(x[..., i]), sin(f_1*x[..., i]), sin(f_2*x[..., i]), ... sin(f_N * x[..., i]), cos(x[..., i]), cos(f_1*x[..., i]), cos(f_2*x[..., i]), ... cos(f_N * x[..., i]), x[..., i] # only present if include_input is True. ], here f_i is the frequency. Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. Args: num_freqs (int): the number of frequencies, default is 6; logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; input_dim (int): the input dimension, default is 3; include_input (bool): include the input tensor or not, default is True. Attributes: frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), otherwise, it is input_dim * num_freqs * 2. """ def __init__(self, num_freqs: int = 6, logspace: bool = True, input_dim: int = 3, include_input: bool = True, include_pi: bool = True) -> None: """The initialization""" super().__init__() if logspace: frequencies = 2.0 ** torch.arange( num_freqs, dtype=torch.float32 ) else: frequencies = torch.linspace( 1.0, 2.0 ** (num_freqs - 1), num_freqs, dtype=torch.float32 ) if include_pi: frequencies *= torch.pi self.register_buffer("frequencies", frequencies, persistent=False) self.include_input = include_input self.num_freqs = num_freqs self.out_dim = self.get_dims(input_dim) def get_dims(self, input_dim): temp = 1 if self.include_input or self.num_freqs == 0 else 0 out_dim = input_dim * (self.num_freqs * 2 + temp) return out_dim def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward process. Args: x: tensor of shape [..., dim] Returns: embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] where temp is 1 if include_input is True and 0 otherwise. """ if self.num_freqs > 0: embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1) if self.include_input: return torch.cat((x, embed.sin(), embed.cos()), dim=-1) else: return torch.cat((embed.sin(), embed.cos()), dim=-1) else: return x class LearnedFourierEmbedder(nn.Module): """ following @crowsonkb "s lead with learned sinusoidal pos emb """ """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """ def __init__(self, in_channels, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 per_channel_dim = half_dim // in_channels self.weights = nn.Parameter(torch.randn(per_channel_dim)) def forward(self, x): """ Args: x (torch.FloatTensor): [..., c] Returns: x (torch.FloatTensor): [..., d] """ # [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d] freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1) fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1) return fouriered class TriplaneLearnedFourierEmbedder(nn.Module): def __init__(self, in_channels, dim): super().__init__() self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim) self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim) self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim) self.out_dim = in_channels + dim def forward(self, x): yz_embed = self.yz_plane_embedder(x) xz_embed = self.xz_plane_embedder(x) xy_embed = self.xy_plane_embedder(x) embed = yz_embed + xz_embed + xy_embed return embed def sequential_pos_embed(num_len, embed_dim): assert embed_dim % 2 == 0 pos = torch.arange(num_len, dtype=torch.float32) omega = torch.arange(embed_dim // 2, dtype=torch.float32) omega /= embed_dim / 2. omega = 1. / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = torch.sin(out) # (M, D/2) emb_cos = torch.cos(out) # (M, D/2) embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) return embeddings def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].to(timesteps.dtype) * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4, num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=None): if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1): return nn.Identity(), input_dim elif embed_type == "fourier": embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim, logspace=True, include_input=True) return embedder_obj, embedder_obj.out_dim elif embed_type == "hashgrid": raise NotImplementedError elif embed_type == "sphere_harmonic": raise NotImplementedError else: raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")