# Adapted from https://github.com/mosaicml/llm-foundry # Classes changed: MultiheadAttention # Functions changed: scaled_multihead_dot_product_attention, build_alibi_bias, build_attn_bias # SPDX-License-Identifier: Apache-2.0 """Attention layers.""" import math import warnings from typing import Optional import torch import torch.nn as nn from einops import rearrange from packaging import version from torch import nn from torch.linalg import vector_norm from llmfoundry.models.layers.norm import LPLayerNorm from torch.nn import functional as F def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool): # disable causal when it is not needed # necessary for flash & triton for generation with kv_cache if original_is_causal and num_query_tokens != num_key_tokens: if num_query_tokens != 1: raise NotImplementedError( 'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.' ) else: return False return original_is_causal def scaled_multihead_dot_product_attention( query, key, value, n_heads, past_key_value=None, long_range_past_key_value=None, softmax_scale=None, attn_bias=None, attn_bias_ae=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, topk=None, faiss_indexes=None, n_layers=None, current_layer=None, mask_by_sim=False, sim_threshold=0.0 ): q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) kv_n_heads = 1 if multiquery else n_heads k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) had_kv=False if past_key_value is not None: # attn_impl: flash & triton use kernels which expect input shape [b, s, h, d_head]. # kv_cache is therefore stored using that shape. # attn_impl: torch stores the kv_cache in the ordering which is most advantageous # for its attn computation ie # keys are stored as tensors with shape [b, h, d_head, s] and # values are stored as tensors with shape [b, h, s, d_head] if len(past_key_value) != 0: k = torch.cat([past_key_value[0], k], dim=3) v = torch.cat([past_key_value[1], v], dim=2) had_kv=True past_key_value = (k, v) b, h, s_q, d = q.shape s_k = k.size(-1) if softmax_scale is None: softmax_scale = 1 / math.sqrt(d) attn_weight = q.matmul(k) * softmax_scale if attn_bias is not None: # clamp to 0 necessary for torch 2.0 compile() _s_q = max(0, attn_bias.size(2) - s_q) _s_k = max(0, attn_bias.size(3) - s_k) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if (attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): raise RuntimeError( f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.' ) attn_weight = attn_weight + attn_bias if needs_weights: #will return memory indices w/attention weights reshaped_idx = None if long_range_past_key_value is not None or faiss_indexes is not None: if long_range_past_key_value is not None: #manual memories k_cache, v_cache = long_range_past_key_value s_cache = k_cache.size(-1) k_cache = k_cache.to(k.device) v_cache = v_cache.to(k.device) q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True) k_n = k_cache/vector_norm(k_cache, ord=2, dim=-2, keepdim=True) sim = q_n.matmul(k_n) if s_cache sim_threshold).bool(), 'b h s i -> b h (s i)').unsqueeze(-2).expand(-1, -1, s_q, -1) min_val = torch.finfo(selected_k.dtype).min elif faiss_indexes is not None: #faiss indexes kn_index, kv_index = faiss_indexes q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True) one_hot_encodings = F.one_hot(torch.arange(0, n_heads*n_layers, device=q.device))*10 q_n = torch.concat([rearrange(q_n, 'b h s d -> b (h s) d', h=n_heads), one_hot_encodings[n_heads*current_layer:n_heads*(current_layer+1)].unsqueeze(0).repeat_interleave(repeats=q.size(-2), dim=-2)], dim=-1).squeeze() D, I = kn_index.search(q_n.to('cpu').numpy(), k=topk) selected_k=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,:d], '(h s) d -> 1 h d s', h=32).to(q.device) selected_v=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,d:], '(h s) d -> 1 h s d', h=32).to(q.device) s_k_ae = selected_k.size(-1) s_k += s_k_ae attn_weight_cache = q.matmul(selected_k) * softmax_scale if mask_by_sim: attn_weight_cache = attn_weight_cache.masked_fill(sim_mask, min_val) if attn_bias_ae is not None: #add alibi bias to memories _s_q = max(0, attn_bias_ae.size(2) - s_q) _s_k = max(0, attn_bias_ae.size(3) - s_k_ae) attn_bias_ae = attn_bias_ae[:, :, _s_q:, _s_k:] if (attn_bias_ae.size(-1) != 1 and attn_bias_ae.size(-1) != s_k_ae) or (attn_bias_ae.size(-2) != 1 and attn_bias_ae.size(-2) != s_q): raise RuntimeError( f'attn_bias (shape: {attn_bias_ae.shape}) is expected to broadcast to shape: {attn_weight_cache.shape}.' ) attn_weight_cache = attn_weight_cache + attn_bias_ae attn_weight = torch.cat([attn_weight_cache, attn_weight], dim=-1) v = torch.cat([selected_v, v], dim=-2) min_val = torch.finfo(q.dtype).min if key_padding_mask is not None: if attn_bias is not None: warnings.warn( 'Propogating key_padding_mask to the attention module ' +\ 'and applying it within the attention module can cause ' +\ 'unneccessary computation/memory usage. Consider integrating ' +\ 'into attn_bias once and passing that to each attention ' +\ 'module instead.' ) attn_weight = attn_weight.masked_fill( ~key_padding_mask.view((b, 1, 1, s_k)), min_val) def _create_active_externalism_mask(k, s_q, device): mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool) for i in range(s_q): mask[i, i * k : (i + 1) * k] = 1 return ~mask if is_causal and (not q.size(2) == 1): s = max(s_q, s_k) causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) causal_mask = causal_mask.tril() causal_mask = causal_mask.to(torch.bool) causal_mask = ~causal_mask causal_mask = causal_mask[-s_q:, -s_k:] if long_range_past_key_value is not None: mask = _create_active_externalism_mask(k=topk,s_q=s_q, device=attn_weight.device) s=s_q if had_kv: s += (past_key_value[0][0].size(-1) -s_q) causal_mask = torch.cat([mask, causal_mask[:,-s:]], dim=1) attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) attn_weight = torch.softmax(attn_weight, dim=-1) if dropout_p: attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) out = attn_weight.to(v.dtype).matmul(v) out = rearrange(out, 'b h s d -> b s (h d)') if needs_weights: return out, attn_weight, past_key_value, reshaped_idx return out, None, past_key_value, None def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): for tensor in tensors: if tensor.dtype not in valid_dtypes: raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.') if not tensor.is_cuda: raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).') def flash_attn_fn( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from flash_attn import bert_padding, flash_attn_interface # type: ignore # yapf: disable # isort: skip except: raise RuntimeError('Please install flash-attn==1.0.3.post0') check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: # clamp to 0 necessary for torch 2.0 compile() _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if attn_bias is not None: raise NotImplementedError(f'attn_bias not implemented for flash attn.') batch_size, seqlen = query.shape[:2] if key_padding_mask is None: key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) query_padding_mask = key_padding_mask[:, -query.size(1):] query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input( query, query_padding_mask) query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input( key, key_padding_mask) key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask) value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) if multiquery: # Expanding a tensor does not allocate new memory, but only creates a new # view on the existing tensor where a dimension of size one is expanded # to a larger size by setting the stride to 0. # - pytorch docs # # hopefully the kernels can utilize this and we're jot just wasting BW here key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) output_unpad = flash_attn_interface.flash_attn_unpadded_func( query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) output = bert_padding.pad_input( rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) return output, None, past_key_value def triton_flash_attn_fn( query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from llmfoundry.models.layers.flash_attn_triton import flash_attn_func except: _installed = False if version.parse(torch.__version__) < version.parse('2.0.0'): _installed = True # if torch1.13.1 revert to using triton flash attn from HazyResearch # with flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202 try: from flash_attn.flash_attn_triton import flash_attn_func except: _installed = False if not _installed: # installing triton-pre-mlir works for both torch1.13.1 and torch2.0+ # default recommendation is to install this variant raise RuntimeError( 'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' 'and `pip install .[gpu]` if installing from llm-foundry source or ' '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' 'Note: (1) requires you have CMake and PyTorch already installed.' ) check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: # clamp to 0 necessary for torch 2.0 compile() _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if dropout_p: raise NotImplementedError( f'Dropout not implemented for attn_impl: triton.') if needs_weights: raise NotImplementedError( f'attn_impl: triton cannot return attn weights.') if key_padding_mask is not None: warnings.warn( 'Propagating key_padding_mask to the attention module ' +\ 'and applying it within the attention module can cause ' +\ 'unnecessary computation/memory usage. Consider integrating ' +\ 'into attn_bias once and passing that to each attention ' +\ 'module instead.' ) b_size, s_k = key_padding_mask.shape[:2] if attn_bias is None: attn_bias = query.new_zeros(b_size, 1, 1, s_k) attn_bias = attn_bias.masked_fill( ~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) if multiquery: # Expanding a tensor does not allocate new memory, but only creates a new # view on the existing tensor where a dimension of size one is expanded # to a larger size by setting the stride to 0. # - pytorch docs # # hopefully the kernels can utilize this and we're jot just wasting BW here key = key.expand(*key.shape[:2], n_heads, key.size(-1)) value = value.expand(*value.shape[:2], n_heads, value.size(-1)) reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) output = attn_output.view(*attn_output.shape[:2], -1) return output, None, past_key_value class MultiheadAttention(nn.Module): """Multi-head self attention. Using torch or triton attention implemetation enables user to also use additive bias. """ def __init__( self, d_model: int, n_heads: int, attn_impl: str = 'triton', clip_qkv: Optional[float] = None, qk_ln: bool = False, softmax_scale: Optional[float] = None, attn_pdrop: float = 0.0, low_precision_layernorm: bool = False, verbose: int = 0, device: Optional[str] = None, ): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) self.attn_dropout_p = attn_pdrop self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) # for param init fn; enables shape based init of fused layers fuse_splits = (d_model, 2 * d_model) self.Wqkv._fused = (0, fuse_splits) # type: ignore if self.qk_ln: layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm self.q_ln = layernorm_class(self.d_model, device=device) self.k_ln = layernorm_class(self.d_model, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( 'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ 'it uses more memory. When training larger models this can trigger ' +\ 'alloc retries which hurts performance. If encountered, we recommend ' +\ 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' ) elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( 'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ 'we recommend using `attn_impl: triton`.' ) else: raise ValueError(f'{attn_impl=} is an invalid setting.') self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) self.out_proj._is_residual = True # type: ignore def forward( self, x, past_key_value=None, long_range_past_key_value=None, attn_bias=None, attn_bias_ae=None, attention_mask=None, is_causal=True, needs_weights=False, topk=None, faiss_indexes=None, n_layers=None, current_layer=None, mask_by_sim=None, sim_threshold=None ): qkv = self.Wqkv(x) if self.clip_qkv: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.chunk(3, dim=2) key_padding_mask = attention_mask if self.qk_ln: # Applying layernorm to qk dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) context, attn_weights, past_key_value, reshaped_idx = self.attn_fn( query, key, value, self.n_heads, past_key_value=past_key_value, long_range_past_key_value=long_range_past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, attn_bias_ae=attn_bias_ae, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, topk=topk, faiss_indexes=faiss_indexes, n_layers=n_layers, current_layer=current_layer, mask_by_sim=mask_by_sim, sim_threshold=sim_threshold ) return self.out_proj(context), attn_weights, past_key_value, reshaped_idx class MultiQueryAttention(nn.Module): """Multi-Query self attention. Using torch or triton attention implemetation enables user to also use additive bias. """ def __init__( self, d_model: int, n_heads: int, attn_impl: str = 'triton', clip_qkv: Optional[float] = None, qk_ln: bool = False, softmax_scale: Optional[float] = None, attn_pdrop: float = 0.0, low_precision_layernorm: bool = False, verbose: int = 0, device: Optional[str] = None, ): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.head_dim = d_model // n_heads self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.head_dim) self.attn_dropout_p = attn_pdrop # NOTE: if we ever want to make attn TensorParallel, I'm pretty sure we'll # want to split Wqkv into Wq and Wkv where Wq can be TensorParallel but # Wkv shouldn't be TensorParallel # - vchiley self.Wqkv = nn.Linear( d_model, d_model + 2 * self.head_dim, device=device, ) # for param init fn; enables shape based init of fused layers fuse_splits = (d_model, d_model + self.head_dim) self.Wqkv._fused = (0, fuse_splits) # type: ignore if self.qk_ln: layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm self.q_ln = layernorm_class(d_model, device=device) self.k_ln = layernorm_class(self.head_dim, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( 'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ 'it uses more memory. When training larger models this can trigger ' +\ 'alloc retries which hurts performance. If encountered, we recommend ' +\ 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' ) elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( 'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ 'we recommend using `attn_impl: triton`.' ) else: raise ValueError(f'{attn_impl=} is an invalid setting.') self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) self.out_proj._is_residual = True # type: ignore def forward( self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False, ): qkv = self.Wqkv(x) if self.clip_qkv: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.split( [self.d_model, self.head_dim, self.head_dim], dim=2) key_padding_mask = attention_mask if self.qk_ln: # Applying layernorm to qk dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) context, attn_weights, past_key_value = self.attn_fn( query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True, ) return self.out_proj(context), attn_weights, past_key_value def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id): if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: if (prefix_lm or not causal) or use_sequence_id: return (1, n_heads, seq_len, seq_len) return (1, n_heads, 1, seq_len) elif prefix_lm or use_sequence_id: return (1, 1, seq_len, seq_len) return None else: raise ValueError(f'{attn_impl=} is an invalid setting.') def build_attn_bias( attn_impl, n_heads, seq_len, attn_bias=None, causal=False, alibi=False, alibi_bias_max=8, for_ae=False, topk=0, device=None, dtype=None ): if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: # in place add alibi to attn bias if attn_bias is not None: attn_bias = attn_bias.add( build_alibi_bias( n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype, for_ae=for_ae, topk=topk )) else: #for memories attn_bias = build_alibi_bias( n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, for_ae=for_ae, topk=topk) return attn_bias def gen_slopes(n_heads, alibi_bias_max=8, device=None): _n_heads = 2**math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) m = m.mul(alibi_bias_max / _n_heads) slopes = (1. / torch.pow(2, m)) if _n_heads != n_heads: # if n_heads is not a power of two, # Huggingface and FasterTransformer calculate slopes normally, # then return this strided concatenation of slopes slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] return slopes.view(1, n_heads, 1, 1) def build_alibi_bias( n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None, for_ae=False, topk=0 ): if not for_ae: alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) else: alibi_bias = torch.tensor(-seq_len, dtype=torch.int32, device=device).repeat(seq_len*topk).view(1, 1, 1, seq_len*(topk)) if full: # generate 1 x Heads x SeqLen x SeqLen alibi bias mask # otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size) alibi_bias = alibi_bias - torch.arange( 1 - seq_len, 1, dtype=torch.int32, device=device).view( 1, 1, seq_len, 1) alibi_bias = alibi_bias.abs().mul(-1) slopes = gen_slopes(n_heads, alibi_bias_max, device=device) alibi_bias = alibi_bias * slopes return alibi_bias.to(dtype=dtype) ATTN_CLASS_REGISTRY = { 'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, }