phoebeklett commited on
Commit
d38e576
1 Parent(s): 7b239c4

Upload code

Browse files
Files changed (2) hide show
  1. configuration_llama.py +209 -0
  2. modeling_llama.py +1164 -0
configuration_llama.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class ExtendedLlamaConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the LLaMA-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`LlamaModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer decoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer decoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
63
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
64
+ Llama 2 up to 4096, CodeLlama up to 16384.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*):
73
+ Padding token id.
74
+ bos_token_id (`int`, *optional*, defaults to 1):
75
+ Beginning of stream token id.
76
+ eos_token_id (`int`, *optional*, defaults to 2):
77
+ End of stream token id.
78
+ pretraining_tp (`int`, *optional*, defaults to 1):
79
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
80
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
81
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
82
+ issue](https://github.com/pytorch/pytorch/issues/76232).
83
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
84
+ Whether to tie weight embeddings
85
+ rope_theta (`float`, *optional*, defaults to 10000.0):
86
+ The base period of the RoPE embeddings.
87
+ rope_scaling (`Dict`, *optional*):
88
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
89
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
90
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
91
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
92
+ these scaling strategies behave:
93
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
94
+ experimental feature, subject to breaking API changes in future versions.
95
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
96
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
97
+ attention_dropout (`float`, *optional*, defaults to 0.0):
98
+ The dropout ratio for the attention probabilities.
99
+
100
+ ```python
101
+ >>> from transformers import LlamaModel, LlamaConfig
102
+
103
+ >>> # Initializing a LLaMA llama-7b style configuration
104
+ >>> configuration = LlamaConfig()
105
+
106
+ >>> # Initializing a model from the llama-7b style configuration
107
+ >>> model = LlamaModel(configuration)
108
+
109
+ >>> # Accessing the model configuration
110
+ >>> configuration = model.config
111
+ ```"""
112
+
113
+ model_type = "extended-llama"
114
+ keys_to_ignore_at_inference = ["past_key_values"]
115
+
116
+ def __init__(
117
+ self,
118
+ vocab_size=32000,
119
+ hidden_size=4096,
120
+ intermediate_size=11008,
121
+ num_hidden_layers=32,
122
+ num_attention_heads=32,
123
+ num_key_value_heads=None,
124
+ hidden_act="silu",
125
+ max_position_embeddings=2048,
126
+ initializer_range=0.02,
127
+ rms_norm_eps=1e-6,
128
+ use_cache=True,
129
+ pad_token_id=None,
130
+ bos_token_id=1,
131
+ eos_token_id=2,
132
+ pretraining_tp=1,
133
+ tie_word_embeddings=False,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ attention_bias=False,
137
+ attention_dropout=0.0,
138
+
139
+ mask_by_sim = True,
140
+ sim_threshold = 0.25,
141
+ topk = 10,
142
+ use_active_externalism = True,
143
+ memory_type = 'manual',
144
+ memory_device = 'cpu',
145
+
146
+ **kwargs,
147
+ ):
148
+ self.vocab_size = vocab_size
149
+ self.max_position_embeddings = max_position_embeddings
150
+ self.hidden_size = hidden_size
151
+ self.intermediate_size = intermediate_size
152
+ self.num_hidden_layers = num_hidden_layers
153
+ self.num_attention_heads = num_attention_heads
154
+
155
+ # for backward compatibility
156
+ if num_key_value_heads is None:
157
+ num_key_value_heads = num_attention_heads
158
+
159
+ self.num_key_value_heads = num_key_value_heads
160
+ self.hidden_act = hidden_act
161
+ self.initializer_range = initializer_range
162
+ self.rms_norm_eps = rms_norm_eps
163
+ self.pretraining_tp = pretraining_tp
164
+ self.use_cache = use_cache
165
+ self.rope_theta = rope_theta
166
+ self.rope_scaling = rope_scaling
167
+ self._rope_scaling_validation()
168
+ self.attention_bias = attention_bias
169
+ self.attention_dropout = attention_dropout
170
+
171
+ self.mask_by_sim = mask_by_sim
172
+ self.sim_threshold = sim_threshold
173
+ self.topk = topk
174
+ self.use_active_externalism = use_active_externalism
175
+ self.memory_type = memory_type
176
+ self.memory_device = memory_device
177
+ self.use_active_externalism_by_layer = [True for _ in range(num_hidden_layers)]
178
+
179
+ super().__init__(
180
+ pad_token_id=pad_token_id,
181
+ bos_token_id=bos_token_id,
182
+ eos_token_id=eos_token_id,
183
+ tie_word_embeddings=tie_word_embeddings,
184
+ **kwargs,
185
+ )
186
+
187
+ def _rope_scaling_validation(self):
188
+ """
189
+ Validate the `rope_scaling` configuration.
190
+ """
191
+ if self.rope_scaling is None:
192
+ return
193
+
194
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
195
+ raise ValueError(
196
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
197
+ f"got {self.rope_scaling}"
198
+ )
199
+ rope_scaling_type = self.rope_scaling.get("type", None)
200
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
201
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
202
+ raise ValueError(
203
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
204
+ )
205
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
206
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
207
+
208
+
209
+
modeling_llama.py ADDED
@@ -0,0 +1,1164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """ PyTorch LLaMA model."""
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+ import faiss
23
+ from einops import rearrange
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ import torch.nn.functional as F
29
+ from torch.linalg import vector_norm
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+ from transformers.activations import ACT2FN
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ )
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+ from extended_mind_transformers.llama.configuration_llama import ExtendedLlamaConfig
45
+
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "ExtendedLlamaConfig"
50
+
51
+
52
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
53
+ def _make_causal_mask(
54
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
+ ):
56
+ """
57
+ Make causal mask used for bi-directional self-attention.
58
+ """
59
+ bsz, tgt_len = input_ids_shape
60
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
+
69
+
70
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ bsz, src_len = mask.size()
76
+ tgt_len = tgt_len if tgt_len is not None else src_len
77
+
78
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+
80
+ inverted_mask = 1.0 - expanded_mask
81
+
82
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
83
+
84
+
85
+ class LlamaRMSNorm(nn.Module):
86
+ def __init__(self, hidden_size, eps=1e-6):
87
+ """
88
+ LlamaRMSNorm is equivalent to T5LayerNorm
89
+ """
90
+ super().__init__()
91
+ self.weight = nn.Parameter(torch.ones(hidden_size))
92
+ self.variance_epsilon = eps
93
+
94
+ def forward(self, hidden_states):
95
+ input_dtype = hidden_states.dtype
96
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
97
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
98
+
99
+ return (self.weight * hidden_states).to(input_dtype)
100
+
101
+
102
+ class LlamaRotaryEmbedding(torch.nn.Module):
103
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
104
+ super().__init__()
105
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
106
+ self.register_buffer("inv_freq", inv_freq)
107
+
108
+ # Build here to make `torch.jit.trace` work.
109
+ self.max_seq_len_cached = max_position_embeddings
110
+ t = torch.arange(
111
+ self.max_seq_len_cached,
112
+ device=self.inv_freq.device,
113
+ dtype=self.inv_freq.dtype,
114
+ )
115
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
116
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
117
+ emb = torch.cat((freqs, freqs), dim=-1)
118
+ dtype = torch.get_default_dtype()
119
+ self.register_buffer(
120
+ "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
121
+ )
122
+ self.register_buffer(
123
+ "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
124
+ )
125
+
126
+ def forward(self, x, seq_len=None):
127
+ # x: [bs, num_attention_heads, seq_len, head_size]
128
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
129
+ if seq_len > self.max_seq_len_cached:
130
+ self.max_seq_len_cached = seq_len
131
+ t = torch.arange(
132
+ self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype
133
+ )
134
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
135
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
136
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
137
+ self.register_buffer(
138
+ "cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False
139
+ )
140
+ self.register_buffer(
141
+ "sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False
142
+ )
143
+ return (
144
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
145
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
146
+ )
147
+
148
+ class LlamaDynamicScaledRotaryEmbedding(torch.nn.Module):
149
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, ntk=False, device=None):
150
+ super().__init__()
151
+ self.ntk = ntk
152
+ self.base = base
153
+ self.dim = dim
154
+ self.max_position_embeddings = max_position_embeddings
155
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
156
+ self.register_buffer("inv_freq", inv_freq)
157
+
158
+ # Build here to make `torch.jit.trace` work.
159
+ self.max_seq_len_cached = max_position_embeddings
160
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
161
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
162
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
163
+ emb = torch.cat((freqs, freqs), dim=-1)
164
+ dtype = torch.get_default_dtype()
165
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
166
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
167
+
168
+ def forward(self, x, seq_len=None):
169
+ # x: [bs, num_attention_heads, seq_len, head_size]
170
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
171
+ if seq_len > self.max_seq_len_cached:
172
+ self.max_seq_len_cached = seq_len
173
+ if self.ntk:
174
+ base = self.base * ((self.ntk * seq_len / self.max_position_embeddings) - (self.ntk - 1)) ** (self.dim / (self.dim-2))
175
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
176
+ self.register_buffer("inv_freq", inv_freq)
177
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
178
+ if not self.ntk:
179
+ t *= self.max_position_embeddings / seq_len
180
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
181
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
182
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
183
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
184
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
185
+ return (
186
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
187
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
188
+ )
189
+
190
+ class LlamaLinearScaledRotaryEmbedding(torch.nn.Module):
191
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, device=None):
192
+ super().__init__()
193
+ self.scale = scale
194
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
195
+ self.register_buffer("inv_freq", inv_freq)
196
+
197
+ # Build here to make `torch.jit.trace` work.
198
+ self.max_seq_len_cached = max_position_embeddings
199
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
200
+ t /= self.scale
201
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
202
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
203
+ emb = torch.cat((freqs, freqs), dim=-1)
204
+ dtype = torch.get_default_dtype()
205
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
206
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
207
+
208
+ def forward(self, x, seq_len=None):
209
+ # x: [bs, num_attention_heads, seq_len, head_size]
210
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
211
+ if seq_len > self.max_seq_len_cached:
212
+ self.max_seq_len_cached = seq_len
213
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
214
+ t /= self.scale
215
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
216
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
217
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
218
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
219
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
220
+ return (
221
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
222
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
223
+ )
224
+
225
+ class LlamaNTKScaledRotaryEmbedding(torch.nn.Module):
226
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, alpha=1, device=None):
227
+ super().__init__()
228
+ base = base * alpha ** (dim / (dim-2))
229
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
230
+ self.register_buffer("inv_freq", inv_freq)
231
+
232
+ # Build here to make `torch.jit.trace` work.
233
+ self.max_seq_len_cached = max_position_embeddings
234
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
235
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
236
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
237
+ emb = torch.cat((freqs, freqs), dim=-1)
238
+ dtype = torch.get_default_dtype()
239
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
240
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
241
+
242
+ def forward(self, x, seq_len=None):
243
+ # x: [bs, num_attention_heads, seq_len, head_size]
244
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
245
+ if seq_len > self.max_seq_len_cached:
246
+ self.max_seq_len_cached = seq_len
247
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
248
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
249
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
250
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
251
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
252
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
253
+ return (
254
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
255
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
256
+ )
257
+
258
+ def rotate_half(x):
259
+ """Rotates half the hidden dims of the input."""
260
+ x1 = x[..., : x.shape[-1] // 2]
261
+ x2 = x[..., x.shape[-1] // 2 :]
262
+ return torch.cat((-x2, x1), dim=-1)
263
+
264
+
265
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
266
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
267
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
268
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
269
+
270
+ s_q = q.size(-2) #Since we apply rotary pos emb after reading from cache, queries may be shorter
271
+ _q_position_ids = position_ids[:, -s_q:]
272
+ _q_cos = cos[_q_position_ids].unsqueeze(1)
273
+ _q_sin = sin[_q_position_ids].unsqueeze(1)
274
+ q_embed = (q * _q_cos) + (rotate_half(q) * _q_sin)
275
+
276
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
277
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
278
+ k_embed = (k * cos) + (rotate_half(k) * sin)
279
+ return q_embed, k_embed
280
+
281
+
282
+ class LlamaMLP(nn.Module):
283
+ def __init__(
284
+ self,
285
+ hidden_size: int,
286
+ intermediate_size: int,
287
+ hidden_act: str,
288
+ ):
289
+ super().__init__()
290
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
291
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
292
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
293
+ self.act_fn = ACT2FN[hidden_act]
294
+
295
+ def forward(self, x):
296
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
297
+
298
+
299
+ class ExtendedLlamaAttention(nn.Module):
300
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
301
+
302
+ def __init__(self, config: ExtendedLlamaConfig):
303
+ super().__init__()
304
+ self.config = config
305
+ self.hidden_size = config.hidden_size
306
+ self.num_heads = config.num_attention_heads
307
+ self.head_dim = self.hidden_size // self.num_heads
308
+ self.max_position_embeddings = config.max_position_embeddings
309
+ self.num_hidden_layers = config.num_hidden_layers
310
+
311
+ if (self.head_dim * self.num_heads) != self.hidden_size:
312
+ raise ValueError(
313
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
314
+ f" and `num_heads`: {self.num_heads})."
315
+ )
316
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
317
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
318
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
319
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
320
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
321
+
322
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
323
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
324
+
325
+ def forward(
326
+ self,
327
+ hidden_states: torch.Tensor,
328
+ attention_mask: Optional[torch.Tensor] = None,
329
+ position_ids: Optional[torch.LongTensor] = None,
330
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
331
+ output_attentions: bool = False,
332
+ use_cache: bool = False,
333
+
334
+ long_range_past_key_value=None,
335
+ faiss_indexes=None,
336
+ mask_by_sim=False,
337
+ sim_threshold=0.0,
338
+ topk=None,
339
+ current_layer=None,
340
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
341
+ bsz, q_len, _ = hidden_states.size()
342
+
343
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
344
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
345
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
346
+ if past_key_value is not None:
347
+ # reuse k, v, self_attention
348
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
349
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
350
+
351
+ past_key_value = (key_states, value_states) if use_cache else None
352
+
353
+ kv_seq_len = key_states.shape[-2]
354
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
355
+
356
+ query_states_no_rotary = query_states.clone() # use queries wo positional info for memory retrieval
357
+
358
+ query_states, key_states = apply_rotary_pos_emb(
359
+ query_states, key_states, cos, sin, position_ids
360
+ )
361
+ # [bsz, nh, t, hd]
362
+ bsz, nh, s_q, hd = query_states.shape
363
+ s_k = key_states.size(-2)
364
+
365
+ attn_weights = torch.matmul(
366
+ query_states, key_states.transpose(2, 3)
367
+ ) / math.sqrt(self.head_dim)
368
+
369
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
370
+ raise ValueError(
371
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
372
+ f" {attn_weights.size()}"
373
+ )
374
+
375
+ if long_range_past_key_value is not None or faiss_indexes is not None:
376
+ if long_range_past_key_value is not None: #manual memories
377
+
378
+ k_cache, v_cache = long_range_past_key_value
379
+ s_cache = k_cache.size(-2)
380
+
381
+ k_cache = k_cache.to(key_states.device)
382
+ v_cache = v_cache.to(key_states.device)
383
+
384
+ q_n = query_states_no_rotary/vector_norm(query_states_no_rotary, ord=2, dim=-1, keepdim=True)
385
+ k_n = k_cache/vector_norm(k_cache, ord=2, dim=-1, keepdim=True)
386
+
387
+ sim = q_n.matmul(k_n.transpose(2,3))
388
+ if s_cache<topk:
389
+ topk = s_cache #number of tokens in cache < topk
390
+ val, idx = torch.topk(sim, k=topk, dim=-1)
391
+
392
+ reshaped_idx = idx.reshape(bsz, nh, s_q * topk)
393
+
394
+ cos_m, sin_m = self.rotary_emb(value_states, seq_len=self.max_position_embeddings) # use max pos emb for memories
395
+ cos_m = cos_m[:,:,-1,...].repeat(1,1,s_q * topk,1)
396
+ sin_m = sin_m[:,:,-1,...].repeat(1,1,s_q * topk,1)
397
+
398
+ selected_k = k_cache.gather(dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, hd))
399
+ _, selected_k = apply_rotary_pos_emb(
400
+ torch.ones(selected_k.shape, device=key_states.device), selected_k, cos_m, sin_m, position_ids=torch.arange(s_q * topk, device=key_states.device).unsqueeze(0)
401
+ ) # Apply rotary pos emb to selected memory keys, use dummy input for queries
402
+
403
+ selected_v = v_cache.gather(dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, hd))
404
+
405
+ sim_mask = rearrange(~ (val > sim_threshold).bool(), 'b h s i -> b h (s i)').unsqueeze(-2).expand(-1, -1, s_q, -1)
406
+
407
+ elif faiss_indexes is not None: #faiss indexes
408
+
409
+ kn_index, kv_index = faiss_indexes
410
+ q_n = query_states_no_rotary/vector_norm(query_states_no_rotary, ord=2, dim=-1, keepdim=True)
411
+
412
+ one_hot_encodings = F.one_hot(torch.arange(0, nh*self.num_hidden_layers, device=query_states.device))*10
413
+ q_n = torch.concat([rearrange(q_n, 'b h s d -> b (h s) d', h=nh), one_hot_encodings[nh*current_layer:nh*(current_layer+1)].unsqueeze(0).repeat_interleave(repeats=query_states.size(-2), dim=-2)], dim=-1).squeeze()
414
+
415
+ D, I = kn_index.search(q_n.to('cpu').numpy(), k=topk)
416
+
417
+ selected_k=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,:hd], '(h s) d -> 1 h s d', h=nh).to(query_states.device)
418
+ cos_m, sin_m = self.rotary_emb(value_states, seq_len=self.max_position_embeddings) # use max pos emb for memories
419
+ cos_m = cos_m[:,:,-1,...].repeat(1,1,s_q * topk,1)
420
+ sin_m = sin_m[:,:,-1,...].repeat(1,1,s_q * topk,1)
421
+
422
+ _, selected_k = apply_rotary_pos_emb(
423
+ torch.ones(selected_k.shape, device=key_states.device), selected_k, cos_m, sin_m, position_ids=torch.arange(s_q * topk, device=key_states.device).unsqueeze(0)
424
+ ) # Apply rotary pos emb to selected memory keys, use dummy input for queries
425
+
426
+ selected_v=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,hd:], '(h s) d -> 1 h s d', h=nh).to(query_states.device)
427
+
428
+ attn_weight_cache = torch.matmul(query_states, selected_k.transpose(2, 3)) / math.sqrt(self.head_dim)
429
+ if mask_by_sim:
430
+ attn_weight_cache = attn_weight_cache.masked_fill(sim_mask, torch.finfo(selected_k.dtype).min)
431
+
432
+ attn_weights = torch.cat([attn_weight_cache, attn_weights], dim=-1)
433
+ value_states = torch.cat([selected_v, value_states], dim=-2)
434
+
435
+ min_val = torch.finfo(attn_weights.dtype).min
436
+ def _create_active_externalism_mask(k, s_q, device, min_val=min_val):
437
+ mask = torch.ones(s_q, s_q * k, device=device, dtype=torch.float32)
438
+ for i in range(s_q):
439
+ mask[i, i * k : (i + 1) * k] = 0
440
+
441
+ filled = mask.masked_fill(mask.bool(), min_val)
442
+ return filled
443
+
444
+ if attention_mask is not None:
445
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
446
+ raise ValueError(
447
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
448
+ )
449
+ if long_range_past_key_value is not None:
450
+ memory_mask = _create_active_externalism_mask(k=topk,s_q=s_q, device=attn_weights.device)
451
+ attention_mask = torch.cat([memory_mask, attention_mask[:,:,:,-s_k:].squeeze(dim=[0,1])], dim=1).unsqueeze(dim=0).unsqueeze(dim=1)
452
+
453
+ attn_weights = attn_weights + attention_mask
454
+ attn_weights = torch.max(
455
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
456
+ )
457
+
458
+ # upcast attention to fp32
459
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
460
+ attn_output = torch.matmul(attn_weights, value_states)
461
+
462
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
463
+ raise ValueError(
464
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
465
+ f" {attn_output.size()}"
466
+ )
467
+
468
+ attn_output = attn_output.transpose(1, 2)
469
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
470
+
471
+ attn_output = self.o_proj(attn_output)
472
+
473
+ if not output_attentions:
474
+ attn_weights = None
475
+
476
+ if long_range_past_key_value is None and faiss_indexes is None:
477
+ reshaped_idx=None
478
+
479
+ return attn_output, attn_weights, past_key_value, reshaped_idx
480
+
481
+ class ExtendedLlamaDecoderLayer(nn.Module):
482
+ def __init__(self, config: ExtendedLlamaConfig):
483
+ super().__init__()
484
+ self.hidden_size = config.hidden_size
485
+ self.self_attn = ExtendedLlamaAttention(config=config)
486
+ self.mlp = LlamaMLP(
487
+ hidden_size=self.hidden_size,
488
+ intermediate_size=config.intermediate_size,
489
+ hidden_act=config.hidden_act,
490
+ )
491
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
492
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
493
+
494
+ def forward(
495
+ self,
496
+ hidden_states: torch.Tensor,
497
+ attention_mask: Optional[torch.Tensor] = None,
498
+ position_ids: Optional[torch.LongTensor] = None,
499
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
500
+ output_attentions: Optional[bool] = False,
501
+ use_cache: Optional[bool] = False,
502
+
503
+ long_range_past_key_value:Optional[Tuple[torch.Tensor]] = None,
504
+ faiss_indexes:Tuple=None,
505
+ mask_by_sim:bool=False,
506
+ sim_threshold:float=None,
507
+ topk:int=None,
508
+ current_layer=None
509
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
510
+ """
511
+ Args:
512
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
513
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
514
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
515
+ output_attentions (`bool`, *optional*):
516
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
517
+ returned tensors for more detail.
518
+ use_cache (`bool`, *optional*):
519
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
520
+ (see `past_key_values`).
521
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
522
+ """
523
+
524
+ residual = hidden_states
525
+
526
+ hidden_states = self.input_layernorm(hidden_states)
527
+
528
+ # Self Attention
529
+ hidden_states, self_attn_weights, present_key_value, selected_idx = self.self_attn(
530
+ hidden_states=hidden_states,
531
+ attention_mask=attention_mask,
532
+ position_ids=position_ids,
533
+ past_key_value=past_key_value,
534
+ output_attentions=output_attentions,
535
+ use_cache=use_cache,
536
+
537
+ long_range_past_key_value=long_range_past_key_value,
538
+ faiss_indexes=faiss_indexes,
539
+ mask_by_sim=mask_by_sim,
540
+ sim_threshold=sim_threshold,
541
+ topk=topk,
542
+ current_layer=current_layer,
543
+ )
544
+ hidden_states = residual + hidden_states
545
+
546
+ # Fully Connected
547
+ residual = hidden_states
548
+ hidden_states = self.post_attention_layernorm(hidden_states)
549
+ hidden_states = self.mlp(hidden_states)
550
+ hidden_states = residual + hidden_states
551
+
552
+ outputs = (hidden_states,)
553
+
554
+ if output_attentions:
555
+ outputs += (self_attn_weights,)
556
+
557
+ if use_cache:
558
+ outputs += (present_key_value,)
559
+
560
+ if output_attentions:
561
+ outputs += (selected_idx,)
562
+
563
+ return outputs
564
+
565
+
566
+ LLAMA_START_DOCSTRING = r"""
567
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
568
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
569
+ etc.)
570
+
571
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
572
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
573
+ and behavior.
574
+
575
+ Parameters:
576
+ config ([`LlamaConfig`]):
577
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
578
+ load the weights associated with the model, only the configuration. Check out the
579
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
580
+ """
581
+
582
+
583
+ @add_start_docstrings(
584
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
585
+ LLAMA_START_DOCSTRING,
586
+ )
587
+ class LlamaPreTrainedModel(PreTrainedModel):
588
+ config_class = ExtendedLlamaConfig
589
+ base_model_prefix = "model"
590
+ supports_gradient_checkpointing = True
591
+ _no_split_modules = ["LlamaDecoderLayer"]
592
+ _skip_keys_device_placement = "past_key_values"
593
+
594
+ def _init_weights(self, module):
595
+ std = self.config.initializer_range
596
+ if isinstance(module, nn.Linear):
597
+ module.weight.data.normal_(mean=0.0, std=std)
598
+ if module.bias is not None:
599
+ module.bias.data.zero_()
600
+ elif isinstance(module, nn.Embedding):
601
+ module.weight.data.normal_(mean=0.0, std=std)
602
+ if module.padding_idx is not None:
603
+ module.weight.data[module.padding_idx].zero_()
604
+
605
+ def _set_gradient_checkpointing(self, module, value=False):
606
+ if isinstance(module, ExtendedLlamaModel):
607
+ module.gradient_checkpointing = value
608
+
609
+
610
+ LLAMA_INPUTS_DOCSTRING = r"""
611
+ Args:
612
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
613
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
614
+ it.
615
+
616
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
617
+ [`PreTrainedTokenizer.__call__`] for details.
618
+
619
+ [What are input IDs?](../glossary#input-ids)
620
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
621
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
622
+
623
+ - 1 for tokens that are **not masked**,
624
+ - 0 for tokens that are **masked**.
625
+
626
+ [What are attention masks?](../glossary#attention-mask)
627
+
628
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
629
+ [`PreTrainedTokenizer.__call__`] for details.
630
+
631
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
632
+ `past_key_values`).
633
+
634
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
635
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
636
+ information on the default strategy.
637
+
638
+ - 1 indicates the head is **not masked**,
639
+ - 0 indicates the head is **masked**.
640
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
641
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
642
+ config.n_positions - 1]`.
643
+
644
+ [What are position IDs?](../glossary#position-ids)
645
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
646
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
647
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
648
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
649
+
650
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
651
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
652
+
653
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
654
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
655
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
656
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
657
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
658
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
659
+ model's internal embedding lookup matrix.
660
+ use_cache (`bool`, *optional*):
661
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
662
+ `past_key_values`).
663
+ output_attentions (`bool`, *optional*):
664
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
665
+ tensors for more detail.
666
+ output_hidden_states (`bool`, *optional*):
667
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
668
+ more detail.
669
+ return_dict (`bool`, *optional*):
670
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
671
+ """
672
+
673
+
674
+ @add_start_docstrings(
675
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
676
+ LLAMA_START_DOCSTRING,
677
+ )
678
+ class ExtendedLlamaModel(LlamaPreTrainedModel):
679
+ """
680
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
681
+
682
+ Args:
683
+ config: LlamaConfig
684
+ """
685
+
686
+ def __init__(self, config: ExtendedLlamaConfig):
687
+ super().__init__(config)
688
+ self.padding_idx = config.pad_token_id
689
+ self.vocab_size = config.vocab_size
690
+
691
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
692
+ self.layers = nn.ModuleList([ExtendedLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
693
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
694
+
695
+ self.gradient_checkpointing = False
696
+ # Initialize weights and apply final processing
697
+
698
+ self.mask_by_sim = config.mask_by_sim
699
+ self.sim_threshold = config.sim_threshold
700
+ self.topk = config.topk
701
+ self.use_active_externalism = config.use_active_externalism
702
+ self.use_active_externalism_by_layer = config.use_active_externalism_by_layer
703
+
704
+ self.post_init()
705
+
706
+ def get_input_embeddings(self):
707
+ return self.embed_tokens
708
+
709
+ def set_input_embeddings(self, value):
710
+ self.embed_tokens = value
711
+
712
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
713
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
714
+ # create causal mask
715
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
716
+ combined_attention_mask = None
717
+ if input_shape[-1] > 1:
718
+ combined_attention_mask = _make_causal_mask(
719
+ input_shape,
720
+ inputs_embeds.dtype,
721
+ device=inputs_embeds.device,
722
+ past_key_values_length=past_key_values_length,
723
+ )
724
+
725
+ if attention_mask is not None:
726
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
727
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
728
+ inputs_embeds.device
729
+ )
730
+ combined_attention_mask = (
731
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
732
+ )
733
+
734
+ return combined_attention_mask
735
+
736
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
737
+ def forward(
738
+ self,
739
+ input_ids: torch.LongTensor = None,
740
+ attention_mask: Optional[torch.Tensor] = None,
741
+ position_ids: Optional[torch.LongTensor] = None,
742
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
743
+ inputs_embeds: Optional[torch.FloatTensor] = None,
744
+ use_cache: Optional[bool] = None,
745
+ output_attentions: Optional[bool] = None,
746
+ output_hidden_states: Optional[bool] = None,
747
+ return_dict: Optional[bool] = None,
748
+
749
+ use_active_externalism:Optional[bool]=None,
750
+ long_range_past_key_values:Optional[List[Tuple[torch.FloatTensor]]] = None,
751
+ faiss_indexes:Tuple=None,
752
+ topk:int=None,
753
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
754
+ output_attentions = (
755
+ output_attentions
756
+ if output_attentions is not None
757
+ else self.config.output_attentions
758
+ )
759
+ output_hidden_states = (
760
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
761
+ )
762
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
763
+
764
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
765
+ use_active_externalism = (use_active_externalism if use_active_externalism is not None else self.use_active_externalism)
766
+ topk = (topk if topk is not None else self.topk)
767
+
768
+ # retrieve input_ids and inputs_embeds
769
+ if input_ids is not None and inputs_embeds is not None:
770
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
771
+ elif input_ids is not None:
772
+ batch_size, seq_length = input_ids.shape
773
+ elif inputs_embeds is not None:
774
+ batch_size, seq_length, _ = inputs_embeds.shape
775
+ else:
776
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
777
+
778
+ seq_length_with_past = seq_length
779
+ past_key_values_length = 0
780
+
781
+ if past_key_values is not None:
782
+ past_key_values_length = past_key_values[0][0].shape[2]
783
+ seq_length_with_past = seq_length_with_past + past_key_values_length
784
+
785
+ if position_ids is None:
786
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
787
+ position_ids = torch.arange(
788
+ seq_length_with_past, dtype=torch.long, device=device #range of position ids is total seq length since we apply rotary pos emb after reading from cache
789
+ )
790
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length_with_past)
791
+ else:
792
+ position_ids = position_ids.view(-1, seq_length).long()
793
+
794
+ if inputs_embeds is None:
795
+ inputs_embeds = self.embed_tokens(input_ids)
796
+ # embed positions
797
+ if attention_mask is None:
798
+ attention_mask = torch.ones(
799
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
800
+ )
801
+ attention_mask = self._prepare_decoder_attention_mask(
802
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
803
+ )
804
+
805
+ hidden_states = inputs_embeds
806
+
807
+ if self.gradient_checkpointing and self.training:
808
+ if use_cache:
809
+ logger.warning_once(
810
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
811
+ )
812
+ use_cache = False
813
+
814
+ # decoder layers
815
+ all_hidden_states = () if output_hidden_states else None
816
+ all_self_attns = () if output_attentions else None
817
+ next_decoder_cache = () if use_cache else None
818
+ all_idx = () if output_attentions else None
819
+
820
+ for idx, decoder_layer in enumerate(self.layers):
821
+ if output_hidden_states:
822
+ all_hidden_states += (hidden_states,)
823
+
824
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
825
+
826
+ long_range_past_key_value = (long_range_past_key_values[idx]
827
+ if (long_range_past_key_values is not None and self.use_active_externalism_by_layer[idx] and use_active_externalism is True) else None)
828
+
829
+ if long_range_past_key_value is not None and faiss_indexes is not None:
830
+ raise NotImplementedError(
831
+ 'Using faiss and passing key value pairs manually are mutually exclusive right now.')
832
+
833
+ if self.gradient_checkpointing and self.training:
834
+
835
+ def create_custom_forward(module):
836
+ def custom_forward(*inputs):
837
+ # None for past_key_value
838
+ return module(*inputs, output_attentions, None)
839
+
840
+ return custom_forward
841
+
842
+ layer_outputs = torch.utils.checkpoint.checkpoint(
843
+ create_custom_forward(decoder_layer),
844
+ hidden_states,
845
+ attention_mask,
846
+ position_ids,
847
+ None,
848
+ )
849
+ else:
850
+ layer_outputs = decoder_layer(
851
+ hidden_states,
852
+ attention_mask=attention_mask,
853
+ position_ids=position_ids,
854
+ past_key_value=past_key_value,
855
+ output_attentions=output_attentions,
856
+ use_cache=use_cache,
857
+
858
+ topk=topk,
859
+ long_range_past_key_value=long_range_past_key_value,
860
+ faiss_indexes=faiss_indexes,
861
+ mask_by_sim=self.mask_by_sim,
862
+ sim_threshold=self.sim_threshold,
863
+ current_layer=idx,
864
+ )
865
+
866
+ hidden_states = layer_outputs[0]
867
+
868
+ if use_cache:
869
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
870
+
871
+ if output_attentions:
872
+ all_self_attns += (layer_outputs[1],)
873
+
874
+ all_idx += (layer_outputs[3],) # record which memories were retrieved
875
+ hidden_states = self.norm(hidden_states)
876
+
877
+ # add hidden states from the last decoder layer
878
+ if output_hidden_states:
879
+ all_hidden_states += (hidden_states,)
880
+
881
+ next_cache = next_decoder_cache if use_cache else None
882
+ if not return_dict:
883
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
884
+ return BaseModelOutputWithPast(
885
+ last_hidden_state=hidden_states,
886
+ past_key_values=next_cache,
887
+ hidden_states=all_hidden_states,
888
+ attentions=(all_self_attns, all_idx)
889
+ )
890
+
891
+
892
+ class ExtendedLlamaForCausalLM(LlamaPreTrainedModel):
893
+ _tied_weights_keys = ["lm_head.weight"]
894
+
895
+ def __init__(self, config, external_memories=None, **kwargs):
896
+ super().__init__(config)
897
+ self.model = ExtendedLlamaModel(config)
898
+
899
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
900
+
901
+ self.use_active_externalism = config.use_active_externalism
902
+ self.memory_type = config.memory_type
903
+ self.memory_device = config.memory_device
904
+ self._memories = None
905
+ if external_memories is not None:
906
+ self._memories = external_memories
907
+ self.memories = None
908
+
909
+ # Initialize weights and apply final processing
910
+ self.post_init()
911
+
912
+ def get_input_embeddings(self):
913
+ return self.model.embed_tokens
914
+
915
+ def set_input_embeddings(self, value):
916
+ self.model.embed_tokens = value
917
+
918
+ def get_output_embeddings(self):
919
+ return self.lm_head
920
+
921
+ def set_output_embeddings(self, new_embeddings):
922
+ self.lm_head = new_embeddings
923
+
924
+ def set_decoder(self, decoder):
925
+ self.model = decoder
926
+
927
+ def get_decoder(self):
928
+ return self.model
929
+
930
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
931
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
932
+ def forward(
933
+ self,
934
+ input_ids: torch.LongTensor = None,
935
+ attention_mask: Optional[torch.Tensor] = None,
936
+ position_ids: Optional[torch.LongTensor] = None,
937
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
938
+ inputs_embeds: Optional[torch.FloatTensor] = None,
939
+ labels: Optional[torch.LongTensor] = None,
940
+ use_cache: Optional[bool] = None,
941
+ output_attentions: Optional[bool] = None,
942
+ output_hidden_states: Optional[bool] = None,
943
+ return_dict: Optional[bool] = None,
944
+
945
+ use_active_externalism: Optional[bool]=None,
946
+ topk:int=None
947
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
948
+ r"""
949
+ Args:
950
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
951
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
952
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
953
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
954
+
955
+ Returns:
956
+
957
+ Example:
958
+
959
+ ```python
960
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
961
+
962
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
963
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
964
+
965
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
966
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
967
+
968
+ >>> # Generate
969
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
970
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
971
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
972
+ ```"""
973
+
974
+ if self._memories is not None and self.memories is None: #init memories once on first call
975
+ self.memories = self.generate_cache(self._memories, cache_type=self.memory_type)
976
+
977
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
978
+ output_hidden_states = (
979
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
980
+ )
981
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
982
+
983
+ use_active_externalism = (use_active_externalism
984
+ if use_active_externalism is not None else self.use_active_externalism
985
+ )
986
+ topk = topk if topk is not None else None
987
+
988
+ long_range_past_key_values = None
989
+ faiss_indexes = None
990
+ if hasattr(self, "memories") and isinstance(self.memories, list):
991
+ long_range_past_key_values = self.memories
992
+ faiss_indexes = None
993
+ elif hasattr(self, "memories"):
994
+ long_range_past_key_values = None
995
+ faiss_indexes = self.memories
996
+
997
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
998
+ outputs = self.model(
999
+ input_ids=input_ids,
1000
+ attention_mask=attention_mask,
1001
+ position_ids=position_ids,
1002
+ past_key_values=past_key_values,
1003
+ inputs_embeds=inputs_embeds,
1004
+ use_cache=use_cache,
1005
+ output_attentions=output_attentions,
1006
+ output_hidden_states=output_hidden_states,
1007
+ return_dict=return_dict,
1008
+
1009
+ long_range_past_key_values=long_range_past_key_values,
1010
+ faiss_indexes=faiss_indexes,
1011
+ use_active_externalism=use_active_externalism,
1012
+ topk=topk
1013
+ )
1014
+
1015
+ hidden_states = outputs[0]
1016
+ logits = self.lm_head(hidden_states)
1017
+
1018
+ loss = None
1019
+ if labels is not None:
1020
+ # Shift so that tokens < n predict n
1021
+ shift_logits = logits[..., :-1, :].contiguous()
1022
+ shift_labels = labels[..., 1:].contiguous()
1023
+ # Flatten the tokens
1024
+ loss_fct = CrossEntropyLoss()
1025
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1026
+ shift_labels = shift_labels.view(-1)
1027
+ # Enable model parallelism
1028
+ shift_labels = shift_labels.to(shift_logits.device)
1029
+ loss = loss_fct(shift_logits, shift_labels)
1030
+
1031
+ if not return_dict:
1032
+ output = (logits,) + outputs[1:]
1033
+ return (loss,) + output if loss is not None else output
1034
+
1035
+ return CausalLMOutputWithPast(
1036
+ loss=loss,
1037
+ logits=logits,
1038
+ past_key_values=outputs.past_key_values,
1039
+ hidden_states=outputs.hidden_states,
1040
+ attentions=outputs.attentions,
1041
+ )
1042
+
1043
+ def generate_cache(self,
1044
+ input_ids:torch.LongTensor,
1045
+ stride:int=512,
1046
+ max_len:int=2048,
1047
+ cache_type:str='manual'):
1048
+ if cache_type not in ['manual', 'faiss']:
1049
+ raise NotImplementedError(f"Cache type {cache_type} not implemented.")
1050
+
1051
+ prev_end_loc=0
1052
+ long_range_past_key_values = None
1053
+ faiss_indexes= None
1054
+ for b_idx in range(0, input_ids.size(-1), stride): #generate kv-pairs using stride
1055
+ end_loc = min(b_idx + max_len, input_ids.size(-1))
1056
+ trg_len = end_loc - prev_end_loc
1057
+ subseq = input_ids[:, b_idx:end_loc].to(self.model.device)
1058
+ with torch.no_grad():
1059
+ outputs = self.model(subseq, use_cache=True, use_active_externalism=False)
1060
+ to_cache = [(
1061
+ kv[0][:,:,-trg_len:],
1062
+ kv[1][:,:,-trg_len:])
1063
+ for kv in outputs.past_key_values
1064
+ ]
1065
+ long_range_past_key_values, faiss_indexes = self.cache(to_cache, cache_type, long_range_past_key_values=long_range_past_key_values, faiss_indexes=faiss_indexes)
1066
+
1067
+ prev_end_loc = end_loc
1068
+ if end_loc == input_ids.size(-1):
1069
+ break
1070
+ if long_range_past_key_values is not None:
1071
+ return long_range_past_key_values
1072
+ else:
1073
+ return faiss_indexes
1074
+
1075
+ def cache(self,
1076
+ to_cache:List,
1077
+ cache_type:str='manual',
1078
+ long_range_past_key_values:List=None,
1079
+ faiss_indexes:faiss.IndexFlatIP=None,
1080
+ max_length_cache=100000,
1081
+ verbose=False):
1082
+ if long_range_past_key_values is not None and faiss_indexes is not None:
1083
+ raise NotImplementedError("Using faiss and passing key value pairs manually are mutually exclusive right now.")
1084
+
1085
+ if cache_type=='faiss': #add one-hot encoding to match layer, head indices
1086
+ one_hot_encodings = F.one_hot(torch.arange(0, self.config.n_heads*self.config.num_hidden_layers))*10
1087
+ if faiss_indexes is None:
1088
+ faiss_indexes = (faiss.IndexFlatIP(to_cache[0][0].size(-1)+one_hot_encodings.size(-1)), faiss.IndexFlatIP(to_cache[0][1].size(-1)*2))
1089
+ kn_index, kv_index = faiss_indexes
1090
+ for b_idx, (k, v) in enumerate(to_cache):
1091
+ k_n = (k/vector_norm(k, ord=2, dim=-1, keepdim=True)).to('cpu')
1092
+ k_n = torch.concat([rearrange(k_n, 'b h s d -> b (h s) d', h=self.config.n_heads), one_hot_encodings[self.config.n_heads*b_idx:self.config.n_heads*(b_idx+1)].unsqueeze(0).repeat_interleave(repeats=k.size(-2), dim=-2)], dim=-1)
1093
+ kn_index.add(k_n.squeeze().numpy())
1094
+
1095
+ k= rearrange(k, 'b h s d -> b (h s) d', h=self.config.n_heads)
1096
+ v= rearrange(v, 'b h s d -> b (h s) d', h=self.config.n_heads)
1097
+ kv_index.add(torch.concat([v.squeeze(), k.squeeze()], dim=1).to('cpu').numpy())
1098
+ else:
1099
+ if long_range_past_key_values is None:
1100
+ long_range_past_key_values = [(k.to(self.memory_device),v.to(self.memory_device)) for k,v in to_cache]
1101
+ else:
1102
+ long_range_past_key_values = [
1103
+ (
1104
+ torch.concat([kv[0], to_cache[ind][0].to(self.memory_device)], dim=2),
1105
+ torch.concat([kv[1], to_cache[ind][1].to(self.memory_device)], dim=2)
1106
+ )
1107
+ for ind, kv in enumerate(long_range_past_key_values)
1108
+ ]
1109
+ if long_range_past_key_values is not None: #set a limit on manual memory length
1110
+ if long_range_past_key_values[0][0].size(-2) > max_length_cache:
1111
+ long_range_past_key_values = [
1112
+ (
1113
+ kv[0][:, :, -max_length_cache:],
1114
+ kv[1][:, :, -max_length_cache:]
1115
+ )
1116
+ for kv in long_range_past_key_values]
1117
+ if verbose:
1118
+ if cache_type == 'faiss':
1119
+ print(f"{kn_index.ntotal} keys in faiss index")
1120
+ else:
1121
+ print(f"{long_range_past_key_values[0][0].size(-2)} cached kvs")
1122
+
1123
+ return long_range_past_key_values, (kn_index, kv_index) if cache_type == 'faiss' else None
1124
+
1125
+ def prepare_inputs_for_generation(
1126
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1127
+ ):
1128
+ if past_key_values:
1129
+ input_ids = input_ids[:, -1:]
1130
+
1131
+ position_ids = kwargs.get("position_ids", None)
1132
+ if attention_mask is not None and position_ids is None:
1133
+ # create position_ids on the fly for batch generation
1134
+ position_ids = attention_mask.long().cumsum(-1) - 1
1135
+ position_ids.masked_fill_(attention_mask == 0, 1)
1136
+ if past_key_values:
1137
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1138
+
1139
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1140
+ if inputs_embeds is not None and past_key_values is None:
1141
+ model_inputs = {"inputs_embeds": inputs_embeds}
1142
+ else:
1143
+ model_inputs = {"input_ids": input_ids}
1144
+
1145
+ model_inputs.update(
1146
+ {
1147
+ "position_ids": position_ids,
1148
+ "past_key_values": past_key_values,
1149
+ "use_cache": kwargs.get("use_cache"),
1150
+ "attention_mask": attention_mask,
1151
+ 'use_active_externalism': kwargs.get('use_active_externalism'), #add a few more kwargs for active externalism
1152
+ 'topk': kwargs.get('topk', None),
1153
+ }
1154
+ )
1155
+ return model_inputs
1156
+
1157
+ @staticmethod
1158
+ def _reorder_cache(past_key_values, beam_idx):
1159
+ reordered_past = ()
1160
+ for layer_past in past_key_values:
1161
+ reordered_past += (
1162
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1163
+ )
1164
+ return reordered_past