{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb2ee74270>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676610899679806348, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPJujD6mnTG/7jOsPsJktD+2mpa8eey7PvfKJT+hfJG/i2WWPwCrqr2DSZo/t9CYPmMMbL80AUvAxgBHvlf9/r+wjF0+k3aVv9JnSz+j3zI/eXZ6v8iJEz3B/2+/xPALPkMhRT+cJNM+3M8EP8CShb8ZFYk/v+ylv8qnxr5TS5g/i5LLvwazcL9pmV++TenWvx4Slj8JQq09PYYRQEeGlz4euoS/u394wLH+Fj4Z8Wq/I/3Nv7Fh8791tG0/y6cEQLMIer8/Iog8Fb5sv2yyWb5DIUU/nCTTPtzPBD/AkoW/io4HPgHxHb8V88g+oZIHQMFisD9yqrQ/UFREP9kfyLzR2ew9ib3RvlgoVb8y0WA+pqEKv7+m3T9hCSa/E9tsvoYx6T5F2dc/apNtP4Z0t76BPzq/9pstv45zpL3p3ey8szmmv5wk0z6Lufa/j1F1PxZ3gj22sk09OokkP94OuT+Hf4q/90pFv5N31D8krHI8a7RaPzN3uL4OusI/lmBDPYNrtL/T1KM+Xi7bv4xL+7+uVEq+/xcXvyRfZT99yKS95G56v+zFKb8F3Wq/NXMPPkMhRT+CMRvA3M8EP8CShb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABrBTi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82hfPQAAAACqCe+/AAAAAPvp5L0AAAAA6NfpPwAAAABysXg9AAAAAAu3AEAAAAAATkJjPAAAAAAkIvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lEiMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNkIjz0AAAAAG3fivwAAAAA2v749AAAAAJDs4D8AAAAAc/UYvQAAAABPwfo/AAAAADm8NrwAAAAA1hnnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN7ZjLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALcOO8AAAAAMek578AAAAAj/AmvQAAAAAU2Nk/AAAAAD6DnL0AAAAAusDuPwAAAACy+rQ9AAAAAN6I+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnBTI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX6aSvAAAAACjl+2/AAAAAO+P9z0AAAAANtHtPwAAAAAMGdW7AAAAAKaE8z8AAAAAPvWuPAAAAADZqtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGOp59mYjWMAWyUTegDjAF0lEdAqepQWi1zAHV9lChoBkdAkLxRLwnYx2gHTegDaAhHQKnsY3jMmnh1fZQoaAZHQJhr0iD/VAloB03oA2gIR0Cp7utPP9k0dX2UKGgGR0CWaDqiXY16aAdN6ANoCEdAqe+sf5k9U3V9lChoBkdAk1tKyWzF/GgHTegDaAhHQKn3J7sOXmh1fZQoaAZHQJIkjXumaYxoB03oA2gIR0Cp+mmrsByTdX2UKGgGR0CSP2WmP5pKaAdN6ANoCEdAqf5q4MF2V3V9lChoBkdAkw2UHIIWxmgHTegDaAhHQKn/MA8Swnp1fZQoaAZHQJb4AmNR3vBoB03oA2gIR0CqBaKFqSHNdX2UKGgGR0CQdKhBZ6ldaAdN6ANoCEdAqgfJgw482nV9lChoBkdAkKa3WjGkvmgHTegDaAhHQKoKXg4Otnx1fZQoaAZHQJaf+5wwTM9oB03oA2gIR0CqCyyde6ZqdX2UKGgGR0CXd227FsHjaAdN6ANoCEdAqhGo7tAs1HV9lChoBkdAlxhZsKsuF2gHTegDaAhHQKoUXJUYKpl1fZQoaAZHQJbU8Cgbp/xoB03oA2gIR0CqGCWHtWuHdX2UKGgGR0CVxCi/O+qSaAdN6ANoCEdAqhlSTnq3VnV9lChoBkdAmbbH5aePJmgHTegDaAhHQKohK+49X911fZQoaAZHQJh6lmL9/BpoB03oA2gIR0CqI1+VTrE+dX2UKGgGR0CTtzDM/yG0aAdN6ANoCEdAqiXko0ALiXV9lChoBkdAl620hmoR7WgHTegDaAhHQKompmknCwd1fZQoaAZHQJgWBjCpFThoB03oA2gIR0CqLR7lzU7TdX2UKGgGR0CJf70J4SpSaAdN6ANoCEdAqi88fJV81HV9lChoBkdAgcSXhGYrrmgHTegDaAhHQKoyTJ04iot1fZQoaAZHQIvWKXQdCE9oB03oA2gIR0CqM2l8gIQfdX2UKGgGR0CR8MB6KLsKaAdN6ANoCEdAqjzKwB5ooXV9lChoBkdAeqFuKoAGS2gHTegDaAhHQKo+7o8p1A91fZQoaAZHQHbKjdtVJcxoB03oA2gIR0CqQYSAxzq9dX2UKGgGR0CJyoXSBshxaAdN6ANoCEdAqkJI3zcynHV9lChoBkdAj5A021lXimgHTegDaAhHQKpI1Pva11J1fZQoaAZHQIQyMXHim2toB03oA2gIR0CqSvYKpkwwdX2UKGgGR0CVwwZkTYdyaAdN6ANoCEdAqk2SfYjB23V9lChoBkdAjchPDYRNAWgHTegDaAhHQKpOVFl05lx1fZQoaAZHQJQdxsUIsy1oB03oA2gIR0CqV3fcFhXsdX2UKGgGR0CQWkU+cH4XaAdN6ANoCEdAqlphfICEH3V9lChoBkdAkq/s3dbgTGgHTegDaAhHQKpc6x6fJ3h1fZQoaAZHQJGxkOSW7e5oB03oA2gIR0CqXbHzQNTcdX2UKGgGR0B6ZbCJoCdSaAdN6ANoCEdAqmRVBppN9HV9lChoBkdAeg0VWCEpRWgHTegDaAhHQKpmey0KJEZ1fZQoaAZHQJJKV/axoqVoB03oA2gIR0CqaRToUzsQdX2UKGgGR0CCKZzWf9P2aAdN6ANoCEdAqmnSSNfgJnV9lChoBkdAkVstpAUtZmgHTegDaAhHQKpxdc580DV1fZQoaAZHQJP9ZjJ+2E1oB03oA2gIR0CqdL2Nm16WdX2UKGgGR0CUSY5rP+n7aAdN6ANoCEdAqniMcbR4QnV9lChoBkdAlOYgUcn3L2gHTegDaAhHQKp5VEtNBWx1fZQoaAZHQJSLfzK9wm5oB03oA2gIR0Cqf9mB4D9wdX2UKGgGR0CV/szV+Zw5aAdN6ANoCEdAqoH2kgwGnnV9lChoBkdAlfuUkSmIkGgHTegDaAhHQKqEjTxXnyN1fZQoaAZHQJSQyZlWfbtoB03oA2gIR0CqhVPeP7vYdX2UKGgGR0CVaq4ubqhUaAdN6ANoCEdAqovhR0lqrXV9lChoBkdAk+H/69CeE2gHTegDaAhHQKqO1xSYPXl1fZQoaAZHQJWkchOgxrVoB03oA2gIR0Cqks6SDAaedX2UKGgGR0CM2m7A+IM0aAdN6ANoCEdAqpQClLvkR3V9lChoBkdAmJsgtvn8sWgHTegDaAhHQKqbmDwpe/p1fZQoaAZHQJdkOtnwob5oB03oA2gIR0CqndNHhCMQdX2UKGgGR0CG2+V32VVxaAdN6ANoCEdAqqBhwsGxEHV9lChoBkdAlWk3w5NoJ2gHTegDaAhHQKqhJizcAR11fZQoaAZHQJoioQrc0tRoB03oA2gIR0Cqp46r/82rdX2UKGgGR0CWFRVrRBu5aAdN6ANoCEdAqqmtxMnJDHV9lChoBkdAldgpGe+VT2gHTegDaAhHQKqtKEgW8Ad1fZQoaAZHQIqIURxtHhFoB03oA2gIR0CqrkuO0b97dX2UKGgGR0CWkw+g13t8aAdN6ANoCEdAqrc3r0J4S3V9lChoBkdAlE4zQiRnvmgHTegDaAhHQKq5WRODaoN1fZQoaAZHQJdu/6rNnoRoB03oA2gIR0Cqu9dBBzFNdX2UKGgGR0CYka0g8r7PaAdN6ANoCEdAqrybYEnss3V9lChoBkdAlJBXgDRtxmgHTegDaAhHQKrC/UHY6GR1fZQoaAZHQJbEZJGvwE1oB03oA2gIR0CqxRCgTRICdX2UKGgGR0CZ+uFuNxVAaAdN6ANoCEdAqseaIN3GGXV9lChoBkdAmbcQSWZ7X2gHTegDaAhHQKrIVdQfp2V1fZQoaAZHQJGRQZVGTcJoB03oA2gIR0Cq0ZOOsDGMdX2UKGgGR0CXZIUYKpkxaAdN6ANoCEdAqtRJUBGQS3V9lChoBkdAlR3LHEMspWgHTegDaAhHQKrW2pAlfJF1fZQoaAZHQHxPFSn+AEtoB03oA2gIR0Cq15NqHoHLdX2UKGgGR0CVFDqrBCUpaAdN6ANoCEdAqt5mPtD2J3V9lChoBkdAkeLQudwvQGgHTegDaAhHQKrgdroGIKt1fZQoaAZHQIyBQYekpJBoB03oA2gIR0Cq4v+HJtBOdX2UKGgGR0CTQ3BwdbPhaAdN6ANoCEdAquPDxqfvnnV9lChoBkdAmII5PykKu2gHTegDaAhHQKrrcNTcZcd1fZQoaAZHQJP3EwtapxZoB03oA2gIR0Cq7rfCZWq+dX2UKGgGR0CMf931zySWaAdN6ANoCEdAqvJCA6Mir3V9lChoBkdAkvtY6XBxgmgHTegDaAhHQKrzCVQAMlV1fZQoaAZHQIntoq3EycloB03oA2gIR0Cq+YqgAZKndX2UKGgGR0CUjwiGFi8WaAdN6ANoCEdAqvvhmZmZmnV9lChoBkdAkdGR6a9bo2gHTegDaAhHQKr+YfHxSYR1fZQoaAZHQJcioUAT7EZoB03oA2gIR0Cq/zD5bhWHdX2UKGgGR0CWgO72+PBBaAdN6ANoCEdAqwYBOvdM03V9lChoBkdAlIGezposZ2gHTegDaAhHQKsJKtYB/7V1fZQoaAZHQJM22XzDn/1oB03oA2gIR0CrDRE2Hck/dX2UKGgGR0CZGvYr8R+SaAdN6ANoCEdAqw4zUCq6v3V9lChoBkdAmSHEUsWfsmgHTegDaAhHQKsVR3fQ8fV1fZQoaAZHQJdiqaiKziVoB03oA2gIR0CrF230Gu9wdX2UKGgGR0CRLLGwzLwGaAdN6ANoCEdAqxoP9rGipXV9lChoBkdAmNm3h86V+2gHTegDaAhHQKsaygxrSE11fZQoaAZHQJhoUwsXizdoB03oA2gIR0CrIWbJnxrjdX2UKGgGR0CZgcpLEk0KaAdN6ANoCEdAqyPE/UvwmXV9lChoBkdAmd07ZFocrGgHTegDaAhHQKsn1uwX6691fZQoaAZHQHlmifUWl/JoB03oA2gIR0CrKQmEPDpDdX2UKGgGR0CTuKlDF6zFaAdN6ANoCEdAqzSt+PRzBHV9lChoBkdAkGM+w1R+B2gHTegDaAhHQKs3vOoo/iZ1fZQoaAZHQIpyJnanJkpoB03oA2gIR0CrOmKmsNlRdX2UKGgGR0CWxbyuZCv6aAdN6ANoCEdAqzsoUeuFH3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}