--- library_name: transformers language: - th license: apache-2.0 base_model: openai/whisper-medium tags: - asr - speech-recognition - thai - custom-model - fine-tuning - Common Voice - generated_from_trainer metrics: - wer model-index: - name: Whisper Medium TH - Custom datasets and Common voice 17 results: [] --- # Whisper Medium TH - Custom datasets and Common voice 17 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - Wer: 59.1432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.267 | 0.2405 | 500 | 0.2401 | 77.2512 | | 0.1975 | 0.4810 | 1000 | 0.1865 | 68.8672 | | 0.1935 | 0.7215 | 1500 | 0.1659 | 64.4477 | | 0.1591 | 0.9620 | 2000 | 0.1477 | 63.3167 | | 0.0821 | 1.2025 | 2500 | 0.1431 | 60.2557 | | 0.0762 | 1.4430 | 3000 | 0.1365 | 59.1432 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3