My first quantization uses the quantization method provided by vllm: https://docs.vllm.ai/en/latest/quantization/int8.html NUM_CALIBRATION_SAMPLES = 2048 MAX_SEQUENCE_LENGTH = 8192 smoothing_strength=0.8 I will verify the validity of the model and update the readme as soon as possible. edit: The performance in my ERP test was comparable to Mistral-Nemo-Instruct-2407-GPTQ-INT8, which I consider a successful quantization. lm_eval --model vllm --model_args pretrained="/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token",add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0 --tasks gsm8k --num_fewshot 5 --limit 250 --batch_size 1 vllm (pretrained=/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token,add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: 1 |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.784|± |0.0261| | | |strict-match | 5|exact_match|↑ |0.768|± |0.0268| lm_eval --model vllm \ l_args > --model_args pretrained="/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token",add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0 \ ks hellaswag \ > --tasks hellaswag \ > --limit 150 \ > --num_fewshot 10 \ --batch_size 1 vllm (pretrained=/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token,add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0), gen_kwargs: (None), limit: 150.0, num_fewshot: 10, batch_size: 1 | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |---------|------:|------|-----:|--------|---|-----:|---|-----:| |hellaswag| 1|none | 10|acc |↑ |0.5800|± |0.0404| | | |none | 10|acc_norm|↑ |0.7533|± |0.0353|