--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: ft-mistral-with-customize-ds-with-QLoRA results: [] --- # ft-mistral-with-customize-ds-with-QLoRA This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2214 - F1 Micro: 0.7857 - F1 Macro: 0.5834 - F1 Weighted: 0.7780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:| | No log | 1.0 | 25 | 0.4114 | 0.6912 | 0.4936 | 0.6959 | | No log | 2.0 | 50 | 0.2625 | 0.7617 | 0.5660 | 0.7549 | | No log | 3.0 | 75 | 0.2297 | 0.7838 | 0.5651 | 0.7767 | | 0.3919 | 4.0 | 100 | 0.2214 | 0.7857 | 0.5834 | 0.7780 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.15.0 - Tokenizers 0.15.1