"""LoRDCoder model class, based on GPT model. License: Apache-2.0 """ import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from .configuration_lordcoder_v0 import LoRDCoderConfig # Fused kernels # Use separate functions for each case because conditionals prevent kernel fusion. @torch.jit.script def upcast_masked_softmax( x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype ): input_dtype = x.dtype x = x.to(softmax_dtype) * scale x = torch.where(mask, x, mask_value) x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) return x @torch.jit.script def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype): input_dtype = x.dtype x = x.to(softmax_dtype) * scale x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) return x @torch.jit.script def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor): x = torch.where(mask, x, mask_value) x = torch.nn.functional.softmax(x, dim=-1) return x class LoRDCoderAttention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() self.mask_value = None self.multi_query = config.multi_query self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.kv_heads = 1 if self.multi_query else self.num_heads self.kv_dim = self.kv_heads * self.head_dim self.split_size = self.embed_dim if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights self.is_cross_attention = is_cross_attention self.layer_idx = layer_idx self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 self.scale_attention_softmax_in_fp32 = ( config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32 ) if self.is_cross_attention: raise NotImplementedError("Cross Attention not supported.") if self.multi_query: raise NotImplementedError("Multi-Query Attention not supported for cross_attention") self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim) self.q_attn = nn.Linear(self.embed_dim, self.embed_dim) else: self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim) self.c_proj = nn.Linear(self.embed_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) def _get_mask_value(self, device, dtype): # torch.where expects a tensor. We use a cache to avoid recreating it every time. if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device: self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device) return self.mask_value def _attn(self, query, key, value, attention_mask=None, head_mask=None): dtype = query.dtype softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype upcast = dtype != softmax_dtype unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1 scale_factor = unscale**-1 if self.scale_attn_weights: scale_factor /= self.head_dim**0.5 # MQA models: (batch_size, query_length, num_heads * head_dim) # MHA models: (batch_size, num_heads, query_length, head_dim) query_shape = query.shape batch_size = query_shape[0] key_length = key.size(-1) if self.multi_query: # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length) # -> (batch_size, query_length, num_heads, key_length) query_length = query_shape[1] attn_shape = (batch_size, query_length, self.num_heads, key_length) attn_view = (batch_size, query_length * self.num_heads, key_length) # No copy needed for MQA 2, or when layer_past is provided. query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim) else: # (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length) # -> (batch_size, num_heads, query_length, key_length) query_length = query_shape[2] attn_shape = (batch_size, self.num_heads, query_length, key_length) attn_view = (batch_size * self.num_heads, query_length, key_length) # Always copies query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim) # No copy when layer_past is provided. key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length) attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype) if query.device.type == "cpu": # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588. # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086, # but the fix has not been released as of pytorch version 2.0.0. attn_weights = torch.zeros_like(attn_weights) beta = 1 else: beta = 0 attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape) if upcast: # Use a fused kernel to prevent a large overhead from casting and scaling. # Sub-optimal when the key length is not a multiple of 8. if attention_mask is None: attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype) else: mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) # print(attn_weights.device, attention_mask.device, mask_value.device, unscale.device, softmax_dtype) attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype) else: if attention_mask is not None: mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion. attn_weights = torch.where(attention_mask, attn_weights, mask_value) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: if self.multi_query: head_mask = head_mask.transpose(1, 2) attn_weights = attn_weights * head_mask if self.multi_query: attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape) else: attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states: torch.Tensor, layer_past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Optional[torch.Tensor]], Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], ]: if encoder_hidden_states is not None: if not hasattr(self, "q_attn") or not self.is_cross_attention: raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `LoRDCoderAttention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key_value = self.c_attn(encoder_hidden_states) attention_mask = encoder_attention_mask elif self.multi_query: query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) else: # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), # i.e., the memory layout is not the same as GPT2. # This makes the concatenation with past_key_value more efficient. query, key_value = ( self.c_attn(hidden_states) .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) .transpose(1, 2) .split((self.head_dim, 2 * self.head_dim), dim=3) ) if layer_past is not None: key_value = torch.cat((layer_past, key_value), dim=-2) present = key_value if use_cache else None key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask) if not self.multi_query: attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: if self.multi_query: # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) attn_weights = attn_weights.transpose(1, 2) outputs += (attn_weights,) return outputs # a, present, (attentions) class LoRDCoderMLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.gate_dim = config.gate_dim self.c_fc = torch.nn.Linear(in_features=embed_dim, out_features=intermediate_size, bias=True) self.c_gate = torch.nn.Linear(in_features=intermediate_size, out_features=self.gate_dim, bias=True) self.c_proj = torch.nn.Linear(in_features=self.gate_dim, out_features=embed_dim, bias=True) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.c_gate(self.act(hidden_states)) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class LoRDCoderBlock(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() hidden_size = config.hidden_size self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = LoRDCoderAttention(config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: if config.multi_query: raise NotImplementedError("Cross-attention not implemented for MQA") self.crossattention = LoRDCoderAttention(config, is_cross_attention=True, layer_idx=layer_idx) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = LoRDCoderMLP(self.inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.Tensor]], layer_past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor] ]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class LoRDCoderPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LoRDCoderConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["LoRDCoderBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, LoRDCoderMLP): # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py module.c_proj.weight.data.normal_( mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) ) module.c_proj._is_hf_initialized = True elif isinstance(module, LoRDCoderAttention): # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py module.c_proj.weight.data.normal_( mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) ) module.c_proj.weight.data.normal_( mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) ) module.c_proj._is_hf_initialized = True elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LoRDCoderModel): module.gradient_checkpointing = value class LoRDCoderModel(LoRDCoderPreTrainedModel): def __init__(self, config): super().__init__(config) self.multi_query = config.multi_query self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([LoRDCoderBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False ) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask): """ Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given. """ if (attention_mask is not None) or (self.config.pad_token_id is None): return # Check only the first and last input IDs to reduce overhead. if self.config.pad_token_id in input_ids[:, [-1, 0]]: warn_string = ( "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See " "https://huggingface.co/docs/transformers/troubleshooting" "#incorrect-output-when-padding-tokens-arent-masked." ) # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an # attention_mask or not. In this case, we should still show a warning because this is a rare case. if ( (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id) or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id) or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id) ): warn_string += ( f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical " f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), " f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded." ) print("Warning:", warn_string) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0].size(-2) if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_length > 0: position_ids = position_ids[:, past_length : input_shape[-1] + past_length :] elif position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Self-attention mask. query_length = input_shape[-1] key_length = past_length + query_length self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length] if attention_mask is not None: self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to( dtype=torch.bool, device=self_attention_mask.device ) # MQA models: (batch_size, query_length, n_heads, key_length) # MHA models: (batch_size, n_heads, query_length, key_length) attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if ( self.config.add_cross_attention and encoder_hidden_states is not None and encoder_attention_mask is not None ): if encoder_attention_mask.dim() == 2: encoder_attention_mask.unsqueeze(1) assert encoder_attention_mask.dim() == 3 encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = [] if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache: presents.append(outputs[1]) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class LoRDCoderForCausalLM(LoRDCoderPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = LoRDCoderModel(config) self.lm_head = lambda x: torch.matmul(x, self.transformer.wte.weight.T) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): raise NotImplementedError("Cannot resize the embeddings of LoRDCoderForCausalLM.") def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } ) return model_inputs def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous().to(shift_logits.device) # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)